
Service

Rexroth Bosch Group

Linear Bushings and Shafts

Linear Motion Technology

2

Ball Rail Systems	Standard Ball Rail Systems Super Ball Rail Systems Ball Rail Systems with Aluminium Runner Blocks Super Ball Rail Systems Corrosion-resistant Ball Rail Systems Wide Ball Rail Systems Ball Rail Systems with integrated Measuring System Clamping and Braking for Ball Rail Systems				
	Rack and Pinion for Ball Rail System Miniature Ball Rail Systems Roller Rail Systems				
Roller Rail Systems	Standard Ball Rail Systems Wide Ball Rail Systems Heavy Load Ball Rail Systems Ball Rail Systems with integrated M Clamping and braking units for Rol Rack and Pinion for Roller Rail Sys	ler Rail Systems			
Linear Bushings and Shafts	Linear Bushings, Linear Sets Blocks, Support Blocks				
	Ball Transfer Units Traditional Technical Parts				
Screw Drives					
Linear Systems	Linear Motion Slides Linear Module	 Screw Drive Toothed Belt Drive Screw Drive Toothed Belt Drive Rack and Pinion Drive Pneumatic Drive Linear Motor 			
	Compact Module	Screw DriveToothed Belt DriveLinear Motor			
	Multi-axis Linear Motion Systems				
	Precision Module	- Screw Drive			
	Ball Rail Table	Screw DriveLinear Motor			

Controllers, Motors, Electrical Accessories

Linear Actuators

Linear Bushings and Shafts

Selection Guide	9
Product Overview	10
Overall Dimensions	12
Load Capacity	13
Life Expectancy Calculation	14
Lubrication	18
Assembly	22
Sizing Tables	24
Compact Linear Bushings	26
Compact Linear Sets	32
Super Linear Bushings 函 and 🖪	38
Linear Sets with Super Linear Bushings $oldsymbol{ ilde D}$ and $oldsymbol{ ilde D}$	54
Standard Linear Bushings	76
Linear Sets with Standard Linear Bushings	100
Segmental Linear Bushings	110
Linear Sets with Segmental Linear Bushings	116
Super Linear Bushings 🕮 and 🕮	118
Linear Sets with Super Linear Bushings $m extsf{0}$ and $m extsf{0}$	134
Radial Linear Bushings	142
Linear Sets with Radial Linear Bushings	150
Radial Compact Sets	154
Torque-resistant Linear Bushings	158
Torque-resistant Compact Linear Bushings	166
Linear Sets with Torque-resistant Linear Bushings	168
Linear Bushings for combined Linear and Rotary motion	194
Precision Steel Shafts	198
Steel Shafts with assembled Shaft Support, Shaft Support	216
Support Blocks	244

5

Contents

Compact L	inear Bushings normal RT corrosion-resistant	R0658		30
Compact L	inear Sets closed, normal or corrosion-resistant adjustable, normal	R1027 R1028		32 32
	Tandem closed, normal or corrosion-resistant	R1029		34
	closed, corrosion-resistant	R1707	O	36
Super Line	ar Bushings 💁 closed	R0670		50
	open	R0671		50
Super Line	ar Bushings 🗉 closed	R0672		52
	open	R0673		52
Linear Sets	with Super Linear Bushings or Aluminum closed adjustable	R1035 R1036		56 56
	open open, adjustable	R1037 R1038		58 58
	side open side open, adjustable	R1071 R1072	00	60 60
Linear Sets	with Super Linear Bushings 🖾 Tandem closed	R1085		62
	adjustable	R1032		62
	open	R1087		64

	open, adjustable	R1034		64
	Flange	R1083	and and a set	66
Linear Sets	with Super Linear Bushings 🖸 or 🖻 cast iron closed adjustable	R1065 R1066		68 68
	open open, adjustable	R1067 R1068	See .	70 70
	side open side open, adjustable	R1073 R1074		72 72
	Flange	R1081		74
Standard L	near Bushings closed, without seal closed, with seal	R0600 R0602		84 84
	closed, without seal, corrosion-resistant closed, with seal, corrosion-resistant	R0600 R0602		86 86
	adjustable, without seal adjustable, with seal	R0610 R0612		88 88
	open, without seal open, with seal	R0630 R0632		90 90
	Tandem with seal, normal or corrosion-resistant	R0650		92
	Flange with seal, normal or corrosion-resistant	R0740		94
	Flange tandem with seal, normal or corrosion-resistant	R0741		96
	Middle flange with seal, normal or corrosion-resistant	R0742		98

Linear Sets	with Standard Linear Bushings closed adjustable	R1065 R1066		102 102
	open open, adjustable	R1067 R1068	Ser .	104 104
	side open side open, adjustable	R1073 R1074	000	106 106
	Flange	R1081		108
Segmental	Linear Bushings normal or corrosion-resistant	R0668		114
Linear Sets	with segmental Linear Bushings adjustable, normal or corrosion-resistant	R1060		116
Super Linea	ar Bushings 🖽 closed	R0732		130
	open	R0733		130
Super Linea	ar Bushings closed	R0730		132
	open	R0731		132
Linear Sets	with Super Linear Bushings or	R1701 R1702		136 136
	open open, adjustable	R1703 R1704		138 138
	side open, adjustable	R1706		140
Radial Line	ar Bushings without seal or completely sealed	R0678		148

Linear Sets	with Radial Linear Bushings open open, adjustable	R1075 R1076		150 150
_	side open side open, adjustable	R1077 R1078		152 152
Radial Con	npact Sets open open, adjustable	R1611 R1613		156 156
Torque-res	istant Linear Bushings Type 1: one ball track Type 2: two ball track	R0696 0 R0696 3		164 164
Torque-res	istant Compact Linear Bushings Torque-resistant Compact Linear Bushings	R0720		166
Linear Sets	with torque-resistant Linear Bushings, aluminium Type 1: one ball track Type 2: two ball track	R1098 2 R1098 5	00	170 170
	Tandem Type 1: one ball track Type 2: two ball track	R1099 2 R1099 5	000	172 172
Linear Sets	with torque-resistant Linear Bushings, Steel Type 1: one ball track Type 2: two ball track	R1096 2 R1096 5	0	174 174
	Tandem Type 1: one ball track Type 2: two ball track	R1097 2 R1097 5	00	176 176
Linear Sets	with torque-resistant Compact Linear Bushings	R0721		180
	Tandem	R0722		182
	Flange	R0723		184

Torque-resistant Linear Bushings with four ball tracks				
Flange	R0725		188	
Miniature Flange	R0726	AN-	188	
Rotating Flange	R0727		190	
Linear Bushings for Linear and Rotary Motion with deep groove Ball Bearing (Ball Track Housing) with deep groove Ball Bearing with Roller Bearing, without seal with Roller Bearing, with seal	R0663 R0664 R0665 R0667		196 196 198 198	
Precision Steel Shafts Solid Shaft - Heat-treated steel or corrosion-resistant or hard chrome	R1000	0	214	
Tubular Shaft - Heat-treated Steel or Hard Chrome	R1001	0	215	
Steel Shafts with assembled Shaft Support, Shaft Support for open Standard and Super Linear Bushings with Flange, small overall height for profiled systems with flange, small overall height with flange, large overall height side installation without flange without flange without flange, with fitting edge for Radial Linear Bushings with flange	R1010 R1025 R1014 R1011 R1015 R1013 R1016 R1018		224 226 228 230 232 234 236 238	
side installation for Radial Compact Sets with flange, with fitting edge	R1020 R1012		240 242	
Support Blocks Cast iron Aluminium Flange, cast iron Compact Support Blocks Compact Support Blocks, corrosion-resistant	R1055 R1057 R1056 R1058 R1059		246 248 250 252 254	

Product Selection Linear Bushings

	Compact	Super ⊠/⊞	Standard	Segmental
Application frequency	+++	+++	++	++
Inexpensive	+++	++	++	+++
Easy assembly	+++	++	++	++
Very small dimensions	+++	+	+	+++
Also corrosion-resistant	+++	0	+++	+++
Normal Loads	+++	+++	+++	+++
High Loads	++	+++	++	++
Extreme Loads	0	0	0	0
With self-alignment	0	+++ ¹⁾	0	0
Especially smooth operation	++	+++	++	++
Also open	0	+++	+++	0
High temperature >100 °C	0	0	+++	0
Coarse contamination	0	0	+++	0
Suitable for vacuums	0	0	+++	0
Torque-resistant transfer	0	0	0	0
For Linear and Rotary Motion	0	0	0	0

	Super 🖬 / 🕾	Radial	Torque-resistant	Linear and Rotary Motion
Application frequency	+	+	+	+
Inexpensive	+	+	+	+
Easy assembly	+	+	+	++
Very small dimensions	+	0	+	+
Also corrosion-resistant	0	0	0	0
Normal Loads	+	+	+++	+++
High Loads	+	+	+++	++
Extreme Loads	+++	+++	0	0
With self-alignment	+++	0	0	0
Especially smooth operation	+	++	++	++
Also open	+++	+++	0	0
High temperature >100 °C	0	0	0	0
Coarse contamination	0	0	0	0
Suitable for vacuums	0	0	0	0
Torque-resistant transfer	0	0	+++	0
For Linear and Rotary Motion	0	0	0	+++

1) only Super 🖾

extremely suitable +++

very suitable suitable ++

+

0 not suitable

Product Overview

Our wide product selection of Linear Bushings in this catalog ensures that you will find the right solution for every application.

The Compact Linear Bushing Bushing is distinguished by its compact dimensions. Through the use of integrated metal locking rings, this type eliminates the need for the otherwise typical axial fasteners in the mounting hole. The Compact Linear Bushing is also available in corrosion-resistant format or with reduced radial ventilation.

The Super-Linear Bushing a built-in inertial error compensator, that compensates for the angle between the housing and shaft up to 0.5 degrees tilt without reducing the capacity due to angular pressure. Possible causes for internal errors include shaft flex due to heavy loads or inaccuracies in the connecting construction. The self-adjustment ensures effortless lead-in of the bearings into the loaded zone and even load distribution over the entire bearing row. This results in unparalleled smooth motion and a very high load capacity for the Linear Bushing.

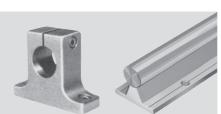
For high loads or very long guide paths, the Super Linear Bushing can also be used on supported shafts. The super Linear Bushing without internal error compensation is the solution for applications where only one Linear Bushing per shaft is used and the Linear Bushing must not travel on the shaft.

The standard Linear Bushing is especially durable due to its steel enclosure and is suitable for applications with high contamination, for example in the wood-working industry. It can be adjusted when closed, and is also available open. For applications with very high temperatures, standard Linear Bushings without seals are available. The closed standard Linear Bushing is also available complete corrosion-resistant steel and is especially good for applications in the vacuum packing and the food industry.

The Segmental Linear Bushing with its durable plastic housing, is a costeffective, ready-to-install Linear Bushing. For applications in corrosive environments or high cleanliness standards, such as the food, semiconductor, or the medical Industries, this Linear Bushing also comes in a corrosion-resistant version.

In radial linear bushings, the bearings are turned to the outside. The large number of long, supportive bearing rows result in high rigidity, making these the correct linear bearings for specialized machinery with higher loads.

with multiple roller channels.

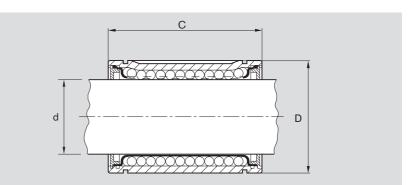

Torque linear bushings are a complete guide solution utilizing one shaft. The torque transfer takes place through more deeply set bearing circuits. Depending on the amount of transferred torque, these torque linear bearings are available

Linear Bushings for linear and rotary motion are available with deep-groove bearings or needle bearings. They are suitable for fluctuating motion as well as medium RPMs.

The Linear Sets are a complete set consisting of one housing with one or two Rexroth Linear Bushings. They are available in a variety of configurations. Through cost-effective manufacture, Linear Sets offer significant cost advantages compared to custom designs. The housings are easy to adjust during assembly, and therefore prevent any distortion of the Linear Bushings.

Precision steel supports come in various tolerances, as solid shafts, hollow shafts, tempered steel, corrosion-resistant steel or hard chromium. Rexroth delivers precision steel supports square cut to your specifications, with chamfering on both sides or machined to your drawings and/or specifications.

Steel supports with assembled shaft support, shaft supports, and support blocks in various versions complete the Linear Bushing guides.



Overall Dimensions

Comparison of the various types of Linear Bushings

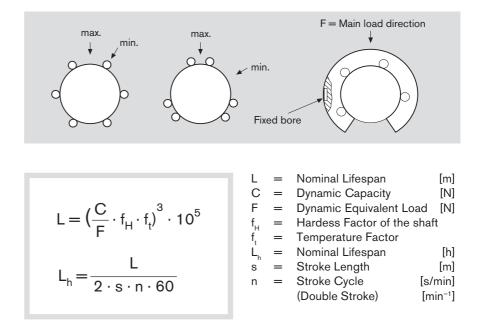
Linear	Comp	oact-	Sup	oer	Stan	dard	Segm	iental	Su	per	Rac	lial-
Bushings	Linear B	ushings	Linear B		Linear E	Bushings	Linear B	ushings	Linear E	lushings	Linear B	ushings
Size			, ⊠	B					₫,	<u></u>		
[mm]	Dimensio	ns [mm]	Dimensio	ns [mm]	Dimensio	ons [mm]						
Ød	D	С	D	С	D	С	D	С	D	С	D	С
3	-	-	-	-	7	10	-	-	-	-	-	-
4	-	-	-	-	8	12	-	-	-	-	-	-
5	-	-	-	-	12	22	-	-	-	-	-	-
8	15	24	-	-	16	25	-	-	-	-	-	-
10	17	26	19	29	19	29	-	-	-	-	-	-
12	19	28	22	32	22	32	20	24	-	-	-	-
14	21	28	-	-	-	-	-	-	_	-	-	-
16	24	30	26	36	26	36	25	28	-	-	-	-
20	28	30	32	45	32	45	30	30	32	45	-	-
25	35	40	40	58	40	58	37	37	40	58	-	-
30	40	50	47	68	47	68	44	44	47	68	60	75
40	52	60	62	80	62	80	56	56	62	80	75	100
50	62	70	75	100	75	100	-	-	75	100	90	125
60	-	-	-	-	90	125	-	-	90	125	110	150
80	-	-	-	-	120	165	-	-	-	-	145	200

ISO 10285 Linear ball bearings, metric series

This standard contains the main dimensions, tolerances and definitions for linear

ball bearings. It subdivides the Linear Bushings into dimension series and tolerance classes.

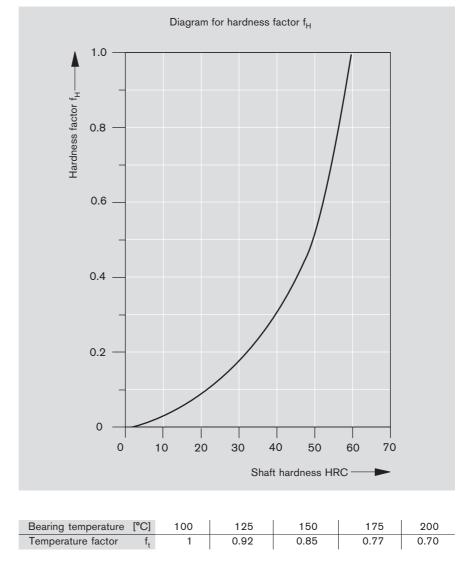
ISO 13012 Linear ball bearings, accessories


This standard clarifies the main dimensions and other functional dimensions of accessories for linear ball bearings - metric series.

Accessories are comprised of bearing housings, blocks, support blocks, shaft supports. They are used in conjunction with ISO 10285.

Capacities

Definition per DIN 636 Part1 Dynamic Capacity C	The radial load that is unchangeable in size and direction, which a Linear Bushing can support for a nominal life expectancy of 10 ⁶ m traveled distance. Note: The value for dynamic capacity assumes that the stroke of the linear bushing is a least three times its overall length. In some cases, the dynamic capcities in the tables may exceed the DIN values by up to 30%. These values have been confirmed in tests.
Static Capacity C ₀	Static radial loading that represents a calculated demand of 5300 Mpa at the contact point in the center tof the highest loaded contact point between roller bearing and the roller channel (shaft). Note: The remaining total deformation of the roller bearings and roller channel (shaft) is approx. 1/10,000 th of the roller bearing diameter.
Nominal Lifespan	The 90% historical probability achievable calculated life expectancy for a single roller bearing or a group of clearly identical bearings operated under identical conditions, using currently conventional material of typical manufacturing quality and standard operating conditions.
Additional Parameters Load Direction	If the load direction and orientation of linear bushing is not clearly defined, the minimum values for capacities should be used in calculations. The maximum capacity can only be used when the bearings are oriented in the load direction. For closed and


minimum values for capacities should be used in calculations. The maximum capacity can only be used when the bearings are oriented in the load direction. For closed and adjustable Linear Bushings, the minimum and/or maximum capacities are listed in the tables according to type. Open bearings must be locked. In this case, the listed capacity of the main load driection is perpendicular across from the opening.

Nominal Lifespan

Lifespan Calculation

Hardness of the shaft

Dynamic equivalent bearing load

Temperature factor

By varying Bearing load in the same load direction, the dynamic equivalent load F is calculated as follows:

$$F = \sqrt[3]{F_1^3 \cdot \frac{q_1}{100} + F_2^3 \cdot \frac{q_2}{100} + \dots + F_n^3 \cdot \frac{q_n}{100}}$$

F	=	dynamic equivalent load	[N]
F ₁ , F ₂ F _n	=	staged, dynamic single loads	[N]
$q_1, q_2 \dots q_n$	=	path sections for $F_1, F_2 \dots F_n$	[%]

In the event of varying load directions, the resulting load is to be confirmed. Preload and resulting tipping forces must also be taken into consideration when calculating the lifespan. Short Stroke

For Compact, Super and Segmental Linear Bushings with a stroke length of less than three times the length of the linear bushing, use the short stroke value. In this case, the life span of the shaft is shorter than the bushing. For further information, see technical data, Linear bushings.

Capacity determination

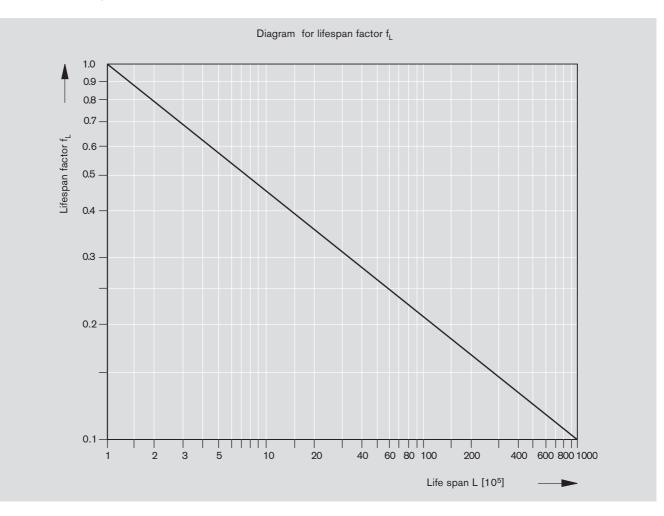
For designs, you can calculate with the following formula:

C =

$$\frac{F}{f_{H} \cdot f_{t} \cdot f_{L}}$$

$$C = Dynamic Capacity [N]$$

$$F = Dynamic Equivalent$$


$$beaing load [N]$$

$$f_{H} = Hardness factor of the shaft$$

$$f_{t} = Temperature factor$$

$$f = Life span factor$$

Influence of the Lifespan

Life Span Calculations

Dynamic Capacities

Linear	Compact	Super	Standard	Segment	Su	per	Radial
Bushing	Linear Bushing	Linear Bushing	Linear Bushing Linear Bushing		Linear E	Bushing	Linear Bushing
sizes		ā, e			O 1)	ST 1)	
[mm]	[N]	[N]	[N]	[N]	[N]	[N]	[N]
Ød	С	С	С	С	С	С	С
3	-	-	55	-	-	-	-
4	-	-	70	-	_	-	-
5	-	-	180	-	-	-	-
8	500	_	320	_	-	-	_
10	600	600	300	_	-	-	-
12	730	830	420	480	-	-	-
14	760	_	-	_	-	-	_
16	950	1020	580	720	-	-	-
20	1120	2020	1170	1020	2520	3530	-
25	2330	3950	2080	1630	4430	6190	_
30	3060	4800	2820	2390	6300	8800	8500
40	5040	8240	5170	3870	9680	13500	13900
50	5680	12060	8260	-	16000	22300	20800
60	-	-	11500	-	23500	-	29500
80	-	_	21000	_	_	-	54800

¹⁾ The shown capacities reflect maximum values, as position and load direction can be pre-defined.

Note to dynamic Capacities

The figures for dynamic load carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the "C" figures in the table must be multiplied by a factor of 1.26.

Calculation Example

The loading of a carriage perpendicular to both shafts in 800N. It is assumed that the load on the four Linear Bushings in evely distributed. The carriage travels along a section of x = 0.2 m with a frequency of n = 30 double strokes per minute. The minimum lifespan should be $L_h = 8000$ hours. The operating temperature is less than 100°C. Precision steel shafts with a minimum HRC 60 and Compact Linear Bushings should be used.

Determining the Linear Bushing size: Load per Linear Bushing:

$$F = \frac{800}{4} = 200 \text{ N}$$

Lifespan L as total travel in meters:

$$L = 2 \cdot s \cdot n \cdot 60 \cdot L_{h} [m]$$

$$L = 2 \cdot 0.2 \cdot 30 \cdot 60 \cdot 8000 [m]$$

$$L = 57.6 \cdot 10^{5} m$$

The lifespan factor $f_L = 0.25$ for a lifespan of $57.6 \cdot 10^5$ can be read from the diagram (for lifespan factor f_1).

For shaft hardness HRC 60, the "Diagram for hardness factor f_{H} " yields the hardness factor $f_{H} = 1$. The temperature factor f_{t} according to the table $f_{t} = 1$.

The necessary capacity C therefore yields:

$$C = \frac{F}{f_{H} \cdot f_{t} \cdot f_{L}} = \frac{200}{1 \cdot 1 \cdot 0.25} = 800 \text{ N}$$

The Linear Bushing with the next highest capacity would be, for example R0658 216 40. The dynamic capacity is $C_{min} = 950 \text{ N}$, the static capacity is $C_{omin} = 500 \text{ N}$.

Calculation of the nominal lifespan

For the selected Linear Bushing R0658 216 40 can be calculated using the following values.

$$L = \left(\frac{C}{F} \cdot f_{H} \cdot f_{t}\right)^{3} \cdot 10^{5} \text{ [m]}$$

the nominal lifespan can be calculated in meters with the following values:

Dynamic Load Capacity	C = 950 N
Load per Linear Bushing	F = 200 N
Hardness factor	f ₄ = 1
Temperature factor	$f_{t} = 1$
Lifespan	$L = (\frac{950}{200} \cdot 1 \cdot 1)^{3} \cdot 10^{5} \text{ [m]}$ $L = 107 \cdot 10^{5} \text{ [m]}$

Coverted to operating hours, the following formula gives the lifespan in hours:

$$L_{h} = \frac{L}{2 \cdot s \cdot n \cdot 60}$$
$$L_{h} = \frac{107 \cdot 10^{5}}{2 \cdot 0.2 \cdot 30 \cdot 60}$$
$$L_{h} = 14861 \text{ Hours}$$

Standard lubrication practices as applied for anti-friction bearings can also be used for all linear bushings.

Linear Bushing are delivered already filled with an anti-corrosion agent that is compatible with all petroleum-based lubricants. Either oil or grease can be used as a lubricant. In most cases, the use of grease as a lubricant is preferable. The advantage of using grease rather than oil is that, being more viscous, grease helps to seal off the linear bushing and adheres better to the surfaces insde the bushing. In-service lubrication is therefore only required at long intervals.

Please observe the lubricant manufacturer's instructions for use. Linear Sets have been designed for use with grease lubricants. If oil is used instead, it is essential to check that all bushing surfaces and rolling elements are properly coated with lubricant.

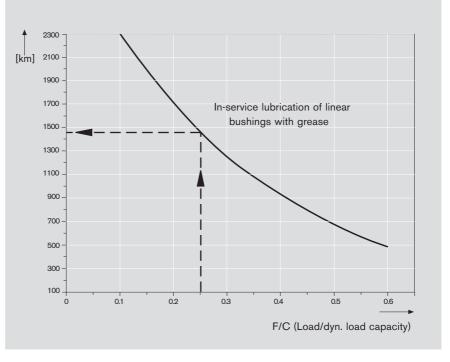
Oil Lubricants

We recommend the use of a grease per DIN 51825 as a lubricant K2K KP2K (for higher loads).

Oil Lubricants

If exceptionally smooth movement is required, oil may be used as a lubricant for the the linear bushings.

Different types of oil and their viscosity ratings are listed below:


ISO-Viscosity class to DIN 51519	Kinematic viscosity at 40 ℃ [mm²/s]	Application
ISO VG 32	32	for low friction and light loads
ISO VG 68	68	
ISO VG 100	100	for low velocities and/or higher loads
ISO VG 320	320	
ISO VG 460	460	

Initial greasing and Maintenance Lubrication Initial greasing and maintenance lubrication via lubrication ports: Lubricate with shaft retracted, until lubricant appears.

Example:

Super Linear Bushing 💁:	Ø25
Dynamic Capacity C:	3950 N (min. Position)
Load:	~ 25 % of the dyn. Capacity (F/C)

Based on the chart, maintenance lubrication should be performed after 1450 km of operation.

The chart gives guide values for in-service lubrication. Practical experience has shown that longer lubrication intervals can be readily achieved. These values presuppose careful initial greasing and regular checks on the condition of the lubricant.

There are many factors that affect in-service lubrication or a change of grease in Linear Bushings.

Some of these factors are listed below:

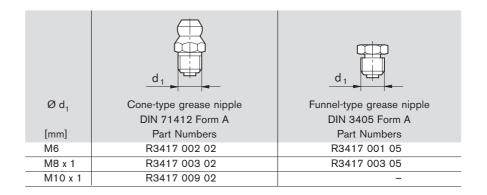
- Load
- Velocity
- Motion sequence
- Temperature

Short lubricating intervals are required in the following cases:

- Higher loads
- Higher velocity (to v_{max})
- Short stroke (stroke s is shorter than the length of the Linear Bushing)
- Low resistance to aging in the lubricant

Lubrication

Linear bushing in-service lubrication options


Types of Linear Bushing	Lubrication through gap between Linear Bushing and wiper seal Lube port Wiper Seal Linear Bushing (without wiper seal)	Lube port	Lubrication through lube port with lubricating groove circumferential lubricating groove
Compact			• Locate the lube port along the visible ball recirculating track
Super 🕰, 🗉			
- closed	•	See Super Linear Bushings	💁, 🗉 – Technical data
– open	•	- "Customer-bu	ilt housing"
Standard			
- closed	•		
– adjustable	•	• Locate the lube port near the slot (alignment during installation)	
– open	•		
Segmental	•		• Locate the lube port along the visible ball recirculating track
Super 🕮, 🕮	See Super Linear E	Bushings 🕮 , 🕮 - Technical data - "Custon	ner-built housing"
Radial		Lube port - see Radial Linear Bushings	
	Axial retention of wiper seal and linear bushing required	Lubrication causes pressure to be the linear bushing and the	

Note:

Ensure that there is sufficient retention in open-type versions. Whenever possible, apply lubricant during longitudinal motion. Lube ports and lube grooves must be free of burrs.

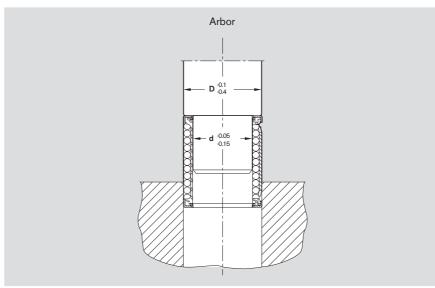
Grease Nipples

Linear sets designed for in-service lubrication are provided with lube holes for grease lubrication. Suitable grease nipples are shown in the table below:

Mounting Instructions

Installation of Linear Bushings

Parallelism


Two linear bushings are required for linear motion assemblies using one shaft only. Assemblies with two shafts must have at least one of the shafts mounted in two linear bushings.

To prevent distortion, which would increase running friction and shorten the service life of the assembly, special care must be taken to ensure precise spacing and parallelism between the two shafts with their respective linear bushings.

Recommended values for maximum spacing inaccuracy P, including deviation from parallelism, for assemblies incorporating linear bushings are as follows:

	Shaft		Pſu	m					
	Ød								
	υu	Standard-	Segmental-	Standard-	Segmental-				
		Super-	Compact-	Super-	Compact-1)				
		Radial-	Linear Bushing	Linear Bushing	Linear Bushing				
	[mm]	Linear Bushing	Linear Daering	Linear Daering					
	3	3	-	9	-				
	4	3	-	9	_				
	5	4	-	12	_				
	8	4	7	12	15				
	10	4	7	12	15				
	12	5	8	13	17				
	14	5	8	13	17				
	16	5	8	13	17				
	20	7	12	15	20				
	25	9	15	17	23				
	30	9	15	17	23				
	40	11	18	19	25				
	50	13	22	21	28				
	60	16	-	24	-				
	80	22	- the values in the "Zero	30	-				
	Linear E Higher 1	Bushings: -20 °C to temperatures are pe	ith wiper seals and +80 °C (with brief ermissable only for s the cost of a reduc	peaks up to +100 sized 12 to 80 stand	°C) dard Linear				
Shaft deflection	In assemblies with rigid housings etc., and long distances between shaft s shaft deflection and resultant pressure between the bushing edge and the shorten the life of the assembly (this does not apply to Super Linear Bushi and up to 30'). For information on how to calculate shaft deflection, see Technical Data on precision steel shafts.				and the shaft will ar Bushings 🖾, 🖽				
Corrosion-resistant Linear Bushings	In very c	Corrosion-resistant steels are steels to ISO 683-17/ EN 10088. n very critical, corrosive environments the parts must be checked under operating conditions. Use appropriate anti-corrosive agents and lubricants.							
Housing Bores	The operating play for all Linear Bushings can be affected by the selection of the shaft and bore tolerances (except closed Standard Linear Bushings). For normal operating play per DIN, the housing bore has a tolerance of H7. For small and large bores, the operating play changes accordingly. For low-play guidance, we recommend bores with a tolerance of K7 or K6. For light preload, bore tolerances M7 and M8 are suitable. (Preload reduces the lifespan of the Linear Bushings and the Shafts).								

Radial clearance	The radial clearance values given in the tables have been obtained by statistical methods and are representative of the clearances to be expected in actual practice.
Adjusting the radial clearance	If an application calls for zero clearance, the radial clearance must be reduced by means of an adjusting screw in the bushing housing until a slight resistance is felt when the shaft is turned. In applications subject to vibration, the adjusting screw should be suitably secured against working loose once the desired clearance has been established. The radial clearance of the closed-type Standard Linear Bushing is not adjustable.
Preload	If negative clearance (preload) is required, we recommend that zero clearance should be established as described above using a dummy shaft whose diameter is smaller by the amount of the desired preload than the actual guide shaft on which the linear bushing is to run.
Vertical Dimensions	The tables for Linear Sets contain tolerance values for the height dimension 'H'. These tolerance values have been obtained by statistical methods and are representative of the values to be expected in actual practice.
Fasteners	See "Technical data" of various Linear Bushings.
Points to note when mounting	The edge of the housing bore must be chamfered. The smaller sizes of linear bushing (but not the Compact series) can be inserted by hand. Use of an arbor is recommended for larger diameters and for the Compact Linear Bushings. Care should be taken not to exert pressure on the wiper seals and steel holding rings (Standard Linear Bushings), as this could damage the ball retainers. If a Compact Linear Bushing is slightly skewed on entering the housing bore, it will align itself as it is inserted further. Removal and re-alignment are unnecessary. Likewise, to prevent damage to the ball retainers and seals, care must be taken to ensure that the ends of the shaft are chamfered and that the Linear Bushing is not tilted when it is pushed onto the shaft. Hammers should never be used on the sleeve, holding rings or ball retainers of linear bushings, as this will invariably cause damage to the bushing. Linear bushings with seals must not be pushed onto the shaft over sharp edges, as the lips of the seals are extremely sensitive to damage. Radial and Torque-Resistant Linear Bushings must be mounted as described in the "Mounting instructions" in the relevant section.

Tolerance Tables

Tolerance for inner dimensions

R	ated		Tolerance for inside dimensions														
dime	ensions		[µm] = 0.001 mm														
	[mm]	G7	H5	H6	H7	H8	H11	H12	H13	JS6	JS7	JS14	K6	K7	M6	M7	P9
>	3	+16	+5	+8	+12	+18	+75	+120	+180	+4	+6	+150	+2	+3	-1	0	-12
\leq	6	+4	0	0	0	0	0	0	0	-4	-6	-150	-6	-9	-9	-12	-42
>	6	+20	+6	+9	+15	+22	+90	+150	+220	+4.5	+7.5	+180	+2	+5	-3	0	-15
\leq	10	+5	0	0	0	0	0	0	0	-4.5	-7.5	-180	-7	-10	-12	-15	-51
>	10	+24	+8	+11	+18	+27	+110	+180	+270	+5.5	+9	+215	+2	+6	-4	0	-18
\leq	18	+6	0	0	0	0	0	0	0	-5.5	-9	-215	-9	-12	-15	-18	-61
>	18	+28	+9	+13	+21	+33	+130	+210	+330	+6.5	+10.5	+260	+2	+6	-4	0	-22
\leq	30	+7	0	0	0	0	0	0	0	-6.5	-10.5	-260	-11	-15	-17	-21	-74
>	30	+34	+11	+16	+25	+39	+160	+250	+390	+8	+12.5	+310	+3	+7	-4	0	-26
\leq	50	+9	0	0	0	0	0	0	0	-8	-12.5	-310	-13	-18	-20	-25	-88
>	50	+40	+13	+19	+30	+46	+190	+300	+460	+9.5	+15	+370	+4	+9	-5	0	-32
\leq	80	+10	0	0	0	0	0	0	0	-9.5	-15	-370	-15	-21	-24	-30	-106
>	80	+47	+15	+22	+35	+54	+220	+350	+540	+11	+17.5	+435	+4	+10	-6	0	-37
\leq	120	+12	0	0	0	0	0	0	0	-11	-17.5	-435	-18	-25	-28	-35	-124
>	120	+54	+18	+25	+40	+63	+250	+400	+630	+12.5	+20	+500	+4	+12	-8	0	-43
\leq	180	+14	0	0	0	0	0	0	0	-12.5	-20	-500	-21	-28	-33	-40	-143
>	180	+61	+20	+29	+46	+72	+290	+460	+720	+14.5	+23	+575	+5	+13	-8	0	-50
≤	250	+15	0	0	0	0	0	0	0	-14.5	-23	-575	-24	-33	-37	-46	-165

Conversion table from millimeters to inches

	Millimeters	μm	Inches
1 Millimeter	1	1000	0.0393701
1 µm	0.001	1	3.93701 · 10 ⁻⁵
1 inch	25.4	25400	1

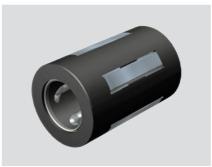
Conversion example of µm to inches:

What are the tolerances (in inches) for a bore with a diameter of 3.5 inches? Bore diameter 3.5 inches = $3.5 \cdot 25.4 \text{ mm} = 88.9 \text{ mm}$ For a bore diameter of 88.9 mm with a tolerance range of H7, the upper tolerance limit is +35 µm and the lower tolerance limit is 0 µm. Max. offsize = $+35 \mu m = +35 \cdot 3.93701 \cdot 10^{-5} \text{ inch} = 1.3779 \cdot 10^{-3} \text{ inch}$ Min. offsize = $0 \mu m$

Tolerance for outer dimensions

Ra	ated		Tolerance for outside dimensions														
dime	nsions		[µm] = 0.001 mm														
	[mm]	g7	h5	h6	h7	h8	h11	h12	h13	js6	js7	js14	k6	k7	m6	m7	p9
>	3	-4	0	0	0	0	0	0	0	+4	+6	+150	+9	+13	+12	+16	+42
\leq	6	-16	-5	-8	-12	-18	-75	-120	-180	-4	-6	-150	+1	+1	+4	+4	+12
>	6	-5	0	0	0	0	0	0	0	+4.5	+7.5	+180	+10	+16	+15	+21	+51
\leq	10	-20	-6	-9	-15	-22	-90	-150	-220	-4.5	-7.5	-180	+1	+1	+6	+6	+15
>	10	-6	0	0	0	0	0	0	0	+5.5	+9	+215	+12	+19	+18	+25	+61
\leq	18	-24	-8	-11	-18	-27	-110	-180	-270	-5.5	-9	-215	+1	+1	+7	+7	+18
>	18	-7	0	0	0	0	0	0	0	+6.5	+10.5	+260	+15	+23	+21	+29	-
\leq	30	-28	-9	-13	-21	-33	-130	-210	-330	-6.5	-10.5	-260	+2	+2	+8	+8	
>	30	-9	0	0	0	0	0	0	0	+8	+12.5	+310	+18	+27	+25	+34	-
\leq	50	-34	-11	-16	-25	-39	-160	-250	-390	-8	-12.5	-310	+2	+2	+9	+9	
>	50	-10	0	0	0	0	0	0	0	+9.5	+15	+370	+21	+32	+30	+41	-
\leq	80	-40	-13	-19	-30	-46	-190	-300	-460	-9.5	-15	-370	+2	+2	+11	+11	
>	80	-12	0	0	0	0	0	0	0	+11	+17.5	+435	+25	+38	+35	+48	-
\leq	120	-47	-15	-22	-35	-54	-220	-350	-540	-11	-17.5	-435	+3	+3	+13	+13	
>	120	-14	0	0	0	0	0	0	0	+12.5	+20	+500	+28	+43	+40	+55	-
\leq	180	-54	-18	-25	-40	-63	-250	-400	-630	-12.5	-20	-500	+3	+3	+15	+15	
>	180	-15	0	0	0	0	0	0	0	+14.5	+23	+575	+33	+50	+46	+63	-
≤	250	-61	-20	-29	-46	-72	-290	-460	-720	-14.5	-23	-575	+4	+4	+17	+17	

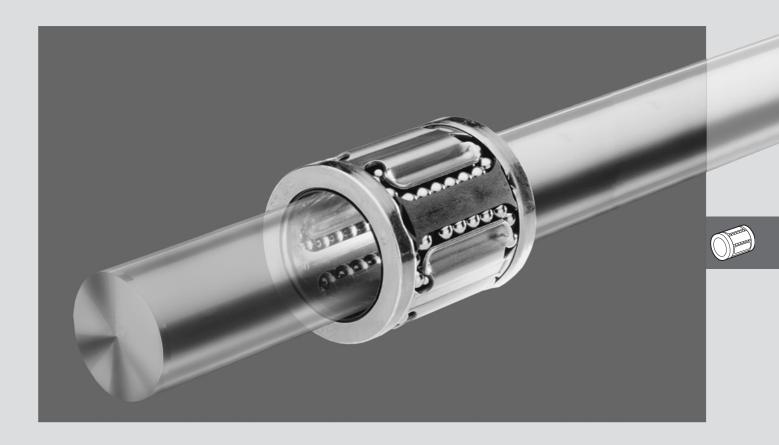
Note:


This catalog refers to the new ISO standards throughout. In some cases, however, the old standards are still used in actual practice. The correspondence between standards is given below.

	New designation	Old designation		
Hex socket	ISO 4762	DIN 912		
Head cap screws				
Hexagon head screws	ISO 4017	DIN 933		

Compact Linear Bushings

The Advantages


- Low cost Linear Bushing for most applications
- Small overall dimensions for especially compact construction
- Integrated metal retainer rings with approx. 0.1 mm oversize on the outer diameter (sizes 12 to 50) for secure placement in the housing bore
- Easy assembly:
- Just press in no additional retention necessary
- Hardened steel segments with ball lubrication in the tracks for high capacity and long lifespan
- High travel speeds (5 m/s)
- Several cavaties/ports serve as lubricant reservoir for long lubrication intervals or extended lubrication
- The cavaties can also capture invading dirt, preventing the potential blockage of the Linear Bushing
- Integrated seals, external seals or without seals
- Low radial clearance (RT) for zero-clearnace guidance
- Also available in corrosion-resistant versions for the medical, chemical and food industries
- Linear sets with aluminum or corrosion-resistant steel housing

Shaft diameter 8 and 10

Shaft diameter 12 to 50

Compact Linear Bushings

Technical Data, Mounting Instructions

Please observe the general technical principles and mounting instructions at the beginning of this catalog as well as the additional technical data given below.

Sea	ling

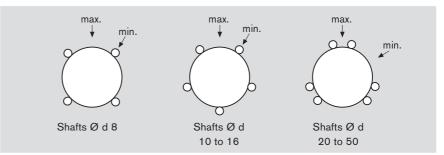
Friction

The sealed standard types are fitted with integral wiper-type seals. Separate end seals can also be ordered (no special retaining elements necessary).

The friction μ of unsealed Compact Linear Bushings using oil as a lubricant lies between 0.001 - 0.004. The friction is lowest under high load. It may, however, be greater than the stated value when only a slight load is applied. For Compact Linear Bushings fitted at both ends with internal wiper seals and not subject to radial loading, the frictional drag (see table below) depends on the speed and the type of lubrication.

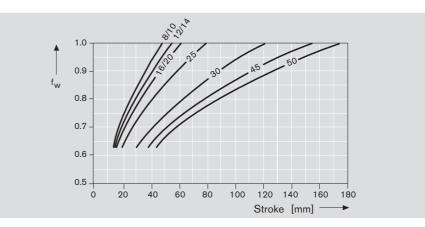
Shaft Ø d	Breakaway force ¹⁾	Friction drag ¹⁾
[mm]	(N approx.)	(N approx.)
8	0.8	0.4
10	1	0.5
12	1.5	0.8
14	1.8	0.9
16	2	1
20	3	1.5
25	4.5	2
30	6	2.5
40	8	3
50	10	4

¹⁾ For separate wiper seals, the values must be multiplied by a factor of 1.5.


Velocity	V _{max}	=	5 m/s
Acceleration	\mathbf{a}_{\max}	=	150 m/s ²

Operating Temperature -20 °C to 100 °C

Direction of load and its influence on the load capacity


The load capacities give are valid for installation in "min" position and should be taken as the basis for calculation.

In applications where the direction of load is exactly known and where the Compact Linear Bushings can be mounted in the "max" position, the load capacity rating must be multiplied by the factors f_{max} (dynamic load capacity C) or $f_{0 max}$ (static load capacity C_0).

In short-stroke applications, the service life of the shafts is shorter than that of the Compact Linear Bushings.

For this reason, the load capacities C listed in the tables must be multiplied by the factor fw.

Use of an arbor is recommended for installation of Compact Linear Bushings into the housing bore (see "Mounting Instructions" in the General Technical Data at the beginning of this catalog). If a Compact Linear Bushing is slightly skewed on entering the housing bore, it will align itself as it is inserted further. Removal of the Compact Linear Bushing and re-alignment are unnecessary.

Shafts \emptyset 8 and 10: The plastic outer shell is oversized. For applications with vibration or higher acceleration, additional retention is needed. Shafts \emptyset 12 to 50: The outer diameter of the Metal retainer ring is oversized.

No additional retention is necessary (bore length \geq C).

Reduced load capacity in shortstroke applications

Notes for mounting

Retention

Compact - RT Type

operation with H7 bores.

With reduced radial clearance for

applications requiring low-clearance

Compact Linear Bushings

Compact Linear Bushing, R0658 normal

Structural Design

- Ball retainer made of POM
- Without seals
- Internal/seperate seals
- · Balls made of anti-friction bearing steel
- Hardened steel segmental load
- bearing platesMetal holding rings
- (from Shaft Ø 12 mm)

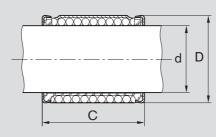
Shaft	F	Mass						
Ød	Normal	RT	Corrosion-resistant					
[mm]				[kg]				
8	R0658 208 40	R0658 262 40	R0658 208 30	0.011				
10	R0658 210 40	R0658 261 40	R0658 210 30	0.014				
12	R0658 212 40	R0658 251 40	R0658 212 30	0.016				
14	R0658 214 40	R0658 258 40	R0658 214 30	0.018				
16	R0658 216 40	R0658 252 40	R0658 216 30	0,025				
20	R0658 220 40	R0658 253 40	R0658 220 30	0.028				
25	R0658 225 40	R0658 254 40	R0658 225 30	0.058				
30	R0658 230 40	R0658 255 40	R0658 230 30	0.080				
40	R0658 240 40	R0658 256 40	R0658 240 30	0.140				
50	R0658 250 40	R0658 257 40	R0658 250 30	0.170				
With one seal: R0658 1 40 oder R0658 1 30								

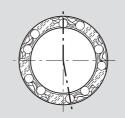
With one seal: R0658 1.. 40 oder R0658 1.. 30.

Shaft	Part Numbers
Shan	Fait Numbers
Ød	Seals
[mm]	
12	R1331 812 10
16	R1331 816 10
20	R1331 820 10
25	R1331 825 10
30	R1331 830 10
40	R1331 840 10
50	R1331 850 10

The figrues for dynamic load carrying capacity have been calculated assuming a nominal travel of 100,000 m.

For a nominal travel of 50,000 the "C" figures in the table must be multiplied by a factor of 1.26.


Corrosion-resistant (anti-friction bearing steel to ISO 683-17 / EN 10088)


Structural Design

- Balls made of corrosion-resistant anti-friction bearing steel
- Corrosion-resistant steel segmental load bearing plates
- Corrosion-resistant steel retainer rings (from Shaft Ø 12 mm)

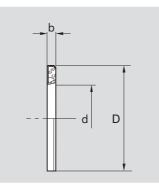
Shafts Part numbers without seals									
	Mass								
Normal	RT	Corrosion-resistant							
			[kg]						
R0658 008 00	R0658 062 00	R0658 008 30	0.011						
R0658 010 00	R0658 061 00	R0658 010 30	0.014						
R0658 012 00	R0658 051 00	R0658 012 30	0.016						
R0658 014 00	R0658 058 00	R0658 014 30	0.018						
R0658 016 00	R0658 052 00	R0658 016 30	0.025						
R0658 020 00	R0658 053 00	R0658 020 30	0.028						
R0658 025 00	R0658 054 00	R0658 025 30	0.058						
R0658 030 00	R0658 055 00	R0658 030 30	0.080						
R0658 040 00	R0658 056 00	R0658 040 30	0.140						
R0658 050 00	R0658 057 00	R0658 050 30	0.170						
	Normal R0658 008 00 R0658 010 00 R0658 012 00 R0658 014 00 R0658 016 00 R0658 020 00 R0658 025 00 R0658 030 00 R0658 040 00	Normal RT R0658 008 00 R0658 062 00 R0658 010 00 R0658 061 00 R0658 012 00 R0658 051 00 R0658 014 00 R0658 058 00 R0658 016 00 R0658 052 00 R0658 020 00 R0658 053 00 R0658 025 00 R0658 054 00 R0658 030 00 R0658 055 00 R0658 040 00 R0658 055 00	R0658 008 00 R0658 062 00 R0658 008 30 R0658 010 00 R0658 061 00 R0658 010 30 R0658 012 00 R0658 051 00 R0658 012 30 R0658 014 00 R0658 058 00 R0658 014 30 R0658 016 00 R0658 052 00 R0658 016 30 R0658 020 00 R0658 053 00 R0658 020 30 R0658 025 00 R0658 054 00 R0658 025 30 R0658 030 00 R0658 055 00 R0658 030 30 R0658 040 00 R0658 056 00 R0658 040 30						

Dimensions

Dime	ensions	s [mm]	No. of	Ra	dial clear	ance[µm]	Shaft/Bore	Load Capacities [N]							
			Ball		normal ²⁾ ,		RT		Normal		Corrosion-resistant			nt	
			Circuits	Corro	sion-resis	tant ²⁾	(reduced radial	dyn	. C	stat	. C ₀	dyn. C		stat. C ₀	
Ød	D ¹⁾	С					clearance)	min	max	min	max	min	max	min	max
		±0.2		h7/H7	h7/JS7	h6/JS6	h7/H7								
8	15	24	4	+29	+20	+13	+9	500	580	350	500	350	410	280	400
				+4	-5	-4	-16								
10	17	26	5	+29	+20	+13	+9	600	720	410	600	420	500	330	480
				+4	-5	-4	-16								
12	19	28	5	+37	+26	+19	+13	730	870	420	620	510	610	340	500
				+2	-8	-8	-22								
14	21	28	5	+37	+26	+19	+13	760	900	430	630	530	630	340	500
				+2	-8	-8	-22								
16	24	30	5	+37	+26	+19	+13	950	1120	500	730	660	780	400	580
				+2	-8	-8	-22								
20	28	30	6	+38	+28	+20	+14	1120	1410	610	900	780	990	480	720
				+2	-9	-9	-22								
25	35	40	6	+42	+29	+21	+18	2330	2930	1310	1950	1630	2050	1050	1560
				+2	-10	-10	-22								
30	40	50	6	+42	+29	+21	+18	3060	3250	1880	2790	2140	2700	1510	2230
				+2	-10	-10	-22								
40	52	60	6	+48	+33	+23	+24	5040	6380	3140	4650	3520	4470	2510	3720
				+2	-13	-12	-22								
50	62	70	6	+48	+33	+23	+24	5680	7180	3610	5350	3970	5030	2890	4280
				+2	-13	-12	-22								

¹⁾ Shafts Ø 8 and 10: The plastic sleeve is slightly oversized. For applications with vibrations i.e. higher acceleration, additional retention is necessary.

Shafts Ø 12 to 50: The outer diameter of the metal holding ring is slightly oversized.


No special retention elements are necessary (housing bore length \geq C).

²⁾ Tolerance K7 or K6 permissible in light-metal alloy housing (slight preload possible).

Seals

Structural Design

- Metal case
- · Seal made out of Elastomer

	Dimensions [mm]	
Ød	D ³⁾	b
12	19	3
16	24	3
20	28	4
25	35	4
30	40	4
40	52	5
50	62	5

_

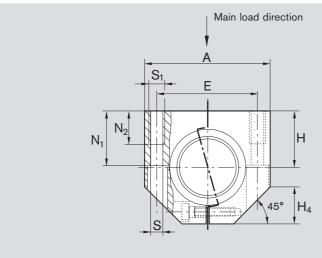
³⁾ The outer diameter D has been manufactured with an oversize of approx. 0.1 mm. No additional retention required. **Compact Linear Sets**

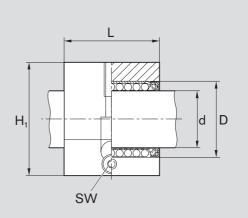
Compact Linear Sets, R1027 closed, standard or corrosionresistant

Compact Linear Sets, R1028 adjustable, standard

Structural Design

- Precision housing (aluminum)
- Compact Linear Bushing
- Two internal seals
- Lubricated with Dynalub 510


Shaft	Part nu	Mass	
Ød	standard	corrosion-resistant ¹⁾	
[mm]			[kg]
12	R1027 212 44	R1027 212 34	0.08
16	R1027 216 44	R1027 216 34	0.11
20	R1027 220 44	R1027 220 34	0.15
25	R1027 225 44	R1027 225 34	0.27
30	R1027 230 44	R1027 230 34	0.40
40	R1027 240 44	R1027 240 34	0.75
50	R1027 250 44	R1027 250 34	1.20


¹⁾ Linear Bushing, corrosion-resistant (anti-friction bearing steel to ISO 683-17 / EN 10088)

Shaft Ø d	Part numbers standard	Mass
[mm]		[kg]
12	R1028 212 44	0.08
16	R1028 216 44	011
20	R1028 220 44	0.15
25	R1028 225 44	0.27
30	R1028 230 44	0.40
40	R1028 240 44	0.75
50	R1028 250 44	1.20

Dimensions

					Dime	nsions [mr	n]					
Ød	D	Н	H ₁	А	L	Е	S ¹⁾	S ₁	N ₁	N ₂	H_4	SW
						±0.15						
12	19	17	33	40	28	29	4.3	M5	16	11	11	2.5
16	24	19	38	45	30	34	4.3	M5	18	11	13	2.5
20	28	23	45	53	30	40	5.3	M6	22	13	15	3
25	35	27	54	62	40	48	6.6	M8	26	18	17	4
30	40	30	60	67	50	53	6.6	M8	29	18	19	4
40	52	39	76	87	60	69	8.4	M10	38	22	24	5
50	62	47	92	103	70	82	10.5	M12	46	26	30	6

Shaft	Radial clearance[µm]			Tolerance		Load capa	acity ³⁾ [N]			
Ød		027 laft	R1028	for H ²⁾	stan	standard		Corrosion-resistant		
[mm]	h6	h7		[µm]	dyn. C	stat. C ₀	dyn. C	stat. C ₀		
12	+32 0	+37 +2	wer	±12	810	490	570	390		
16	+32 0	+37 +2	shaft (lower	±12	1050	570	730	460		
20	+33	+38		+13	1410	900	990	720		
	-1	+2	zero-clearance on h5 limit) prior to delivery	-12						
25	+36	+42	nce to d	+13	2930	1950	2050	1560		
	0	+2	eara	-12						
30	+36	+42	t) pr	+13	3850	2790	2700	2230		
	0	+2	zero	-12						
40	+42	+48	to	+14	6380	4650	4470	3720		
	-1	+2	stec	-12						
50	+42	+48	Adjusted to zero-clearance on h5 limit) prior to delivery	+14	7180	5350	5030	4280		
	-1	+2	∢	-12						

¹⁾ Mounting screws to ISO 4762-8.8.

²⁾ Relative to shaft nominal dimension d.

³⁾The load capacities stated are minimum values as the position and direction of load

cannot always be precisely defined. If the loading direction is not the main load direction, multiply the capacity numbers by the following factors:

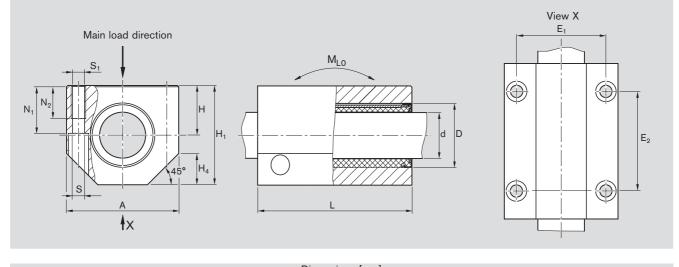
Shafts-Ø 12 and 16: f = 0.90 $f_0 = 0.86$ Shafts-Ø 20 and 50: f = 0.79 $f_0 = 0.68$

The figures for dynamic load carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the "C" figures in the table must be multiplied by a factor of 1.26.

Compact Linear Sets

Compact Linear Sets, R1029 double closed, standard or corrosion-resistant

Structural design


- Precision housing, lightweight series (aluminum)
- Compact Linear Bushing
- Two internal seals
- · Completely sealed
- Lubricated with Dynalub 510

Shaft	Part nu	Mass	
Ød	standard	corrosion-resistant ¹⁾	
[mm]			[kg]
12	R1029 212 44	R1029 212 34	0.17
16	R1029 216 44	R1029 216 34	0.24
20	R1029 220 44	R1029 220 34	0.31
25	R1029 225 44	R1029 225 34	0.57
30	R1029 230 44	R1029 230 34	0.80
40	R1029 240 44	R1029 240 34	1.54
50	R1029 250 44	R1029 250 34	2.45

¹⁾ Linear Bushing, corrosion-resistant (anti-friction bearing steel to ISO 683-17 / EN 10088)

Dimensions

Dimensions [mm]												
Ød	D	Н	H ₁	А	L	E ₁	E ₂	S ¹⁾	S ₁	N ₁	N_2	H_4
						±0.15	±0.15					
12	19	17	33	40	60	29	35	4.3	M5	16	11	11
16	24	19	38	45	65	34	40	4.3	M5	18	11	13
20	28	23	45	53	65	40	45	5.3	M6	22	13	15
25	35	27	54	62	85	48	55	6.6	M8	26	18	17
30	40	30	60	67	105	53	70	6.6	M8	29	18	19
40	52	39	76	87	125	69	85	8.4	M10	38	22	24
50	62	47	92	103	145	82	100	10.5	M12	46	26	30

Sh	aft	Ra	adial	Tolerance		Load capa	Tipping			
Ø	Ø d clearance [µ		nce [µm]	for H ²⁾	star	ndard	corrosio	n-resistant	moment [Nm]	
		Shaft							stat.	
[m	m]	h6	h7	[µm]	dyn. C	stat. C ₀	dyn. C	stat. C ₀	M _{Lo}	
	12	+32	+37	± 12	1310	980	920	780	13	
		0	+2							
	16	+32	+37	± 12	1700	1140	1180	920	18	
		0	+2							
	20	+33	+38	+13	2290	1800	1610	1440	21	
		-1	+2	-12						
-	25	+36	+42	+13	4760	3900	3330	3120	59	
		0	+2	-12						
(30	+36	+42	+13	6250	5580	4385	4460	103	
		0	+2	-12						
4	40	+42	+48	+14	10360	9300	7260	7440	204	
		-1	+2	-12						
ł	50	+42	+48	+14	11660	10700	8170	8560	271	
		-1	+2	-12						

¹⁾ Mounting screws to ISO 4762-8.8.

²⁾ Relative to shaft nominal dimension d.

³⁾ The load capacities stated are minimum values as the position and direction of load cannot always be precisely defined. If the loading direction is not the main load direction, multiply the capacity numbers by the following factors:

The figures for dynamic load carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the "C" figures in the table must be multiplied by a factor of 1.26.

35

Compact Linear Sets

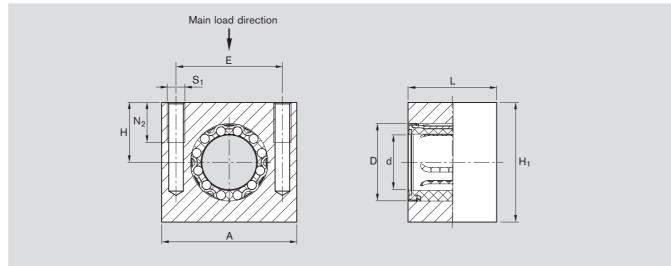
Compact Linear Sets, R1707 closed, corrosion-resistant

Applications

• Due to their clean-design, Compact Linear Sets 1707 are particularly suited to the food, semiconductor, chemical and medical industries.

Structural Design

- Precision housing made out of rust and acid-resistant chrome nickel-steel
- Compact Linear Bushings corrosion-resistant¹⁾
- Two internal seals
- · Completely sealed



Shaft Ø d	Part Numbers	Mass
[mm]		[kg]
12	R1707 212 30	0.25
16	R1707 216 30	0.32
20	R1707 220 30	0.43
25	R1707 225 30	0.78
30	R1707 230 30	1.13
40	R1707 240 30	2.20

Lubricate Compact Linear Sets series R1707 properly before use. For information and recommendations, see lubrication section.

For fitting corrosion-resistant shafts supports, see "Shaft Supports"

¹⁾ Anti-friction bearing steel to ISO 683-17 / EN 10088)

			D	imensions [mm]				
Ød	D	Н	H ₁	А	L	E	S ₁ ¹⁾	N ₂
						±0.15		
12	19	17	33	40	28	29	M5	11
16	24	19	38	45	30	34	M5	11
20	28	23	45	53	30	40	M6	13
25	35	27	54	62	40	48	M8	18
30	40	30	60	67	50	53	M8	18
40	52	39	76	87	60	69	M10	22

Shaft		arance [µm]	Tolerance	Load capa	cities ³⁾ [N]
Ød	S	haft	for H ²⁾		
[mm]	h6	h7	[µm]	dyn. C	stat. C ₀
12	+32	+37	± 12	570	390
	0	+2			
16	+32	+37	± 12	730	460
	0	+2			
20	+33	+38	+13	990	720
	-1	+2	-12		
25	+36	+42	+13	2050	1560
	0	+2	-12		
30	+36	+42	+13	2700	2230
	0	+2	-12		
40	+42	+48	+14	4470	3720
	-1	+2	-12		

- ¹⁾ For a bore hole from "below" drill the bore throught the core diameter
- ²⁾ Relative to shaft nominal dimension d
- ³⁾ The listed load capacities apply to the main load direction.

If the loading direction is not the main load direction, multiply the capacity numbers by the following factors:

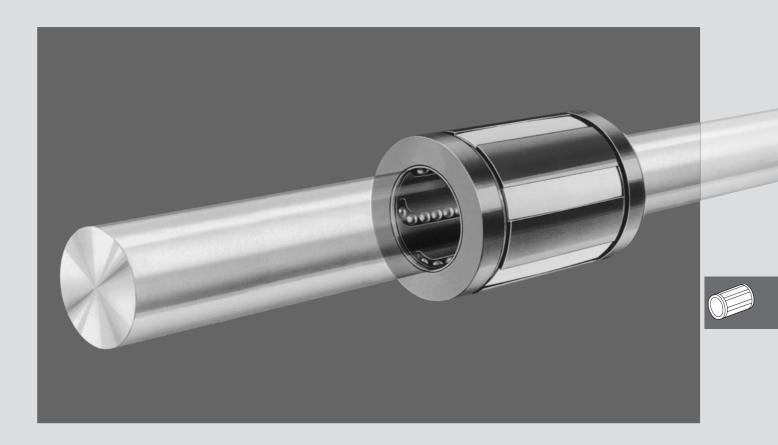
Shafts-Ø 12 and 16: f = 0.90 $f_0 = 0.86$ Shafts-Ø 20 and 40: f = 0.79 $f_0 = 0.68$

Super Linear Bushings 🖾 and 🖪

The Advantages

- The high-performance, great value, low-cost Linear Bushing
- Steel inserts with polished ball tracks and optimal bearing chamber for unbeatably quiet operation and long lifespan
- Super Linear Bushing
 offers shaft deflection and self-alignment
- Super Linear Bushing
 without self-alignment to transfer small tipping forces in the axis direction
- High travel speeds (to 5 m/s)
- Internal, external or without seals
- Open Linear Bushings on fully supported shafts for applications by which other linear guides would tend to deform due to inexact support structures
- Optional longitudinal seals for open Linear Bushings
- Linear sets with housings made of aluminum or cast iron

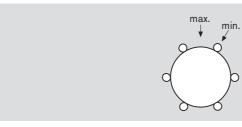
closed type (Super
)


open type (Super 1)

closed type (Super 1)

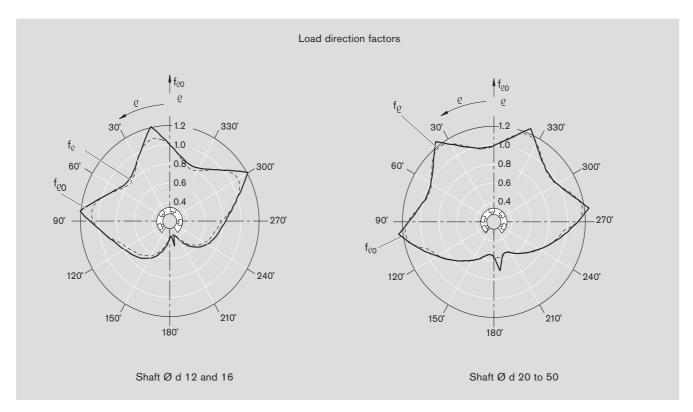
open type (Super 🖪)

Super-Linear Bushings 🖸 und 🗉


Technical Data

Please observe the general technical principles and mounting instructions at the beginning of this catalog as well as the additional technical data given below.

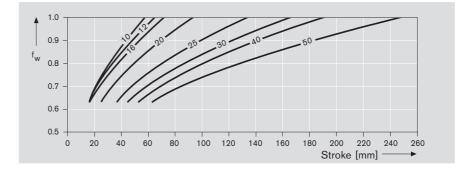
Sealing	Super Linear Bushings are available with internal or with separate wiper-type seals The use of separate seals is advisable in applications involving a high risk of foreig body contamination. In very dirty environments, additional sealing may be necessar (e.g. bellows-type dust boots or telescoping sleeves). Open type Super Linear Bushings can also be supplied fully sealed (with seal strip It should be noted that the friction values for the fully sealed version will be higher.									
Friction	Very low friction due to the rolling friction principle. Extremely low breakaway for The friction μ of unsealed Super Linear Bushings using oil as a lubricant lies betw 0.001 and 0.0025. The friction is lowest under high load. It may, however, be greater than the stated when only a slight load is applied. For Super Linear Bushings fitted at both ends internal wiper seals and not subject to radial loading, the frictional drag (see tabl below) depends on the speed and the type of lubrication.									
	Shaft	closed a	nd open	ор	en					
	Ød	with inter		complete						
		Breakaway force ¹⁾	Frictional drag ¹⁾	Breakaway force	Frictional drag					
	[mm]	[N] approx.	[N] approx.	[N] approx.	[N] approx.					
	10	1	0.5	-	-					
	12	1.5	0.8	6	3					
	16	2	1	9	4					
	20	3	1.5	10	5					
	25	4.5	2	14	6					
	30	6	2.5	18	8					
	40	8	3	24	10					
	50	10	4	30	12					
Velocity	v _{max} ¹⁾ = ¹⁾ Velo the i	arate wiper seals, the 3 m/s cities up to 5 m/s ar ncreased wear on th x 10 ⁶ m without faile	re possible, though ne plastic parts. Uni	the service life will b ts have been known						
Acceleration	a _{max} =	150 m/s²								
Operating Temperature	−20 °C	to 100 °C								


Direction of load and its influence on the load capacity of closed Super Linear Bushings The stated load capacities are valid for installation in "min" position and should be taken as the basis for calculation.

In applications where the direction of load is exactly known and where the Super Linear Bushings can be mounted in the "max" position, the load capacity rating must be multiplied by the factors f_{max} (dynamic load capacity C) or $f_{0\ max}$ (static load capacity C_0).

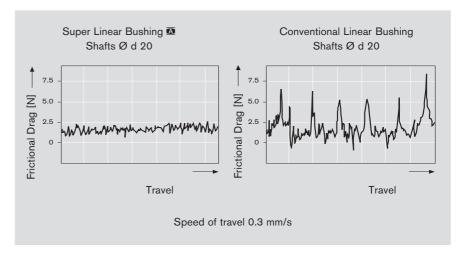
Direction of load and its influence on the load capacity of open Super Linear Bushings

The load capacities C and C₀ apply only when the load is acting along the line $\varrho = 0^{\circ}$. If the load is acting in any other direction, these load capacities must be multiplied by the factor f_e (dynamic load capacity C) or f_{e0} (static load capacity C₀). A reduction in load capacity can be eliminated by selective circumferential positioning of the Super Linear Bushing (see Linear Set with Side Opening).


Super-Linear Bushings
und

Technical Data

Reduced load capacity with short-stroke applications


In short-stroke applications, the service life of the shafts is shorter than that of the Super Linear Bushings.

For this reason, the load capacities C listed in the tables must be multiplied by the load factor $f_{\rm w}.$

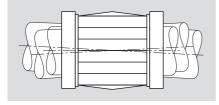
If the load acting on Super Linear Bushing $\overline{\mathbf{G}}$ is F > 0.5 x C, there will be a reduction in the dynamic load capacity C.

The self-alignment feature together with the polished finish of the ball tracks result in extremely smooth operation. The running diagrams below show a comparison with a conventional linear bearing for a load of 800 N and an alignment error of about 8' (due to shaft deflection).

When this type is used, the self-alignment feature requires two Super Linear Bushings to be mounted on at least one of the two shafts of the assembly.

For applications involving water-base coolants/lubricants, we recommend the use of the following linear bushing models:

- Super Linear Bushings 💷 and 🕮
- Standard Linear Bushings


In permanently humid or wet environments (water vapor, condensation), we recommend the use of the following corrosion-resistant linear bushing models:

- Segmental Linear Bushings,
- Compact Linear Bushings or
- Standard Linear Bushings

with steel parts made of corrosion-resistant steel to DIN 17230 / EN 10088.

Reduced load capacity with high loads

Super Linear Bushing self-alignment feature

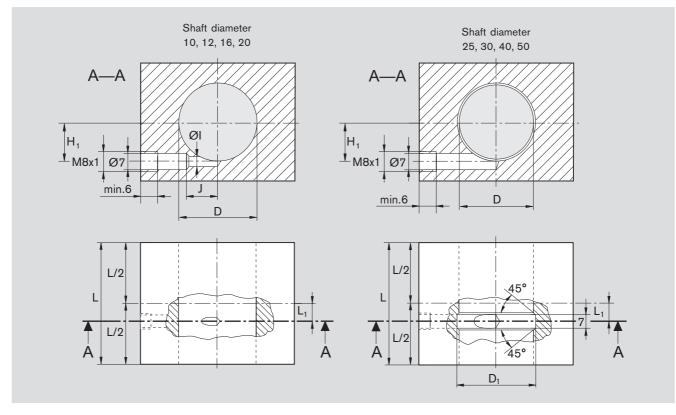
Operation under difficult conditions

Mounting Notes	
Radial Clearance	The radial clearance values given in the tables have been obtained by statistical methods and are representative of the clearances to be expected in actual practice.
Adjusting the radial clearance	The radial clearance is adjustable in all types of Super Linear Bushings. If an application calls for zero clearance, the radial clearance must be reduced by means of an adjusting screw in the bushing housing (see also Linear Sets) until a slight resistance is felt when the shaft is turned. In applications subject to vibration, the adjusting screw should be suitably secured against working loose once the desired clearance has been established.
Preload	If negative clearance (preload) is required, we recommend that zero clearance should be established as described above using a dummy shaft whose diameter is smaller by the amount of the desired preload than the actual guide shaft on which the linear bushing is to run.

Super-Linear Bushings 💁 und 🗉

Custom-Built Housings

Tolerance recommendations for housing bore D:


H7/JS7/JS6 Clearance, for all normal applications

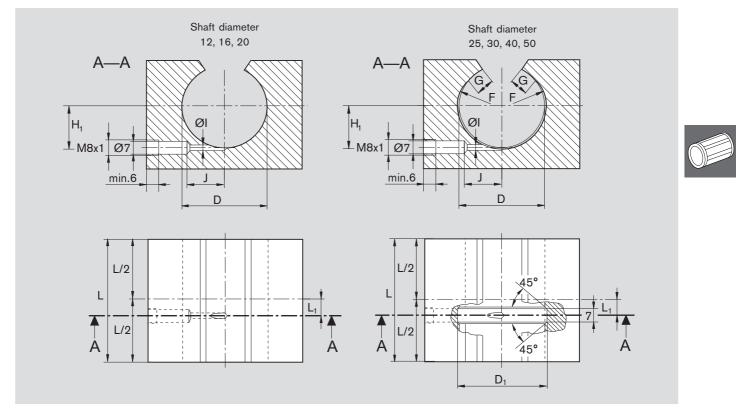
K7/K6 Low clearance, for applications with shifting loads

M7/M6 Light preload, for applications with vibration and high acceleration.

Please note the radial clearance (shaft/bore) values in the corresponding tables.

Lube nut und Lube port for Super Linear Bushings . E, closed – with external seals

The lube channels shown in the illustration have been designed for grease lubricants.


	Part numbers		Shaft-	Lubricant	Dimensions [mm]							
Super Linea	Seals	diameter	[ci	m ³]								
			[mm]	Initial	Maintenance							
A	B		Ød	lubrication	lubrication	L ₁	H ₁	L (min)	D	D_1	ØI	J
R0670 010 00	R0672 010 00	R1331 610 00	10	1.3	0.4	7.5	6	36	19	-	З	11.5
R0670 012 00	R0672 012 00	R1331 612 00	12	1.6	0.5	9	8	39	22	-	5	13
R0670 016 00	R0672 016 00	R1331 616 00	16	1.6	0.5	10	12	43	26	-	5	18
R0670 020 00	R0672 020 00	R1331 620 00	20	3.5	1.1	13.5	15	54	32	-	2	15.5
R0670 025 00	R0672 025 00	R1331 625 00	25	5.5	1.7	18.5	20	67	40	42	-	_
R0670 030 00	R0672 030 00	R1331 630 00	30	8	2.4	23.5	23.5	79	47	49	-	_
R0670 040 00	R0672 040 00	R1331 640 00	40	14	4.2	27.5	31	91	62	66	-	-
R0670 050 00	R0672 050 00	R1331 650 00	50	24	7.2	34.5	37.5	113	75	79	-	-

¹⁾ Maximum fill volume for Rexroth Linear Bushings housing.

The shown fill volumes for the initial lubrication and maintenance lubrication apply to Linear sets R1035 / R1036.

custom-built housing with deviating grease nipple dimensions of the shaft diameter influences the fill volumes of the initial lubrication.

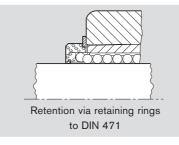
Lube nut and Lube port for Super Linear Bushings **(**, **(**), open – with external seals

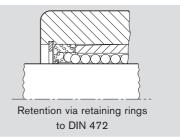
The lube channels shown in the illustration have been designed for grease lubricants. Seals must be secured axially.

	Part numbers		Shaft-	Lubricatio	Dimensions [mm]									
Linear E	Bushings	Seals	diameter	[0	cm ³]									
			[mm]	Initial	Initial Maintenance									
◙	В		Ød	lubrication	lubrication	L ₁	H ₁	L (min)	D	D_1	F	G	ØI	J
R0671 012 00	R0673 012 00	R1331 712 50	12	1.3	0.4	9	8	39	22	-	-	-	2	13
R0671 016 00	R0673 016 00	R1331 716 50	16	1.3	0.4	10	12	43	26	-	-	-	2	14
R0671 020 00	R0673 020 00	R1331 720 50	20	3	0.9	13.5	15	54	32	-	-	-	2	16
R0671 025 00	R0673 025 00	R1331 725 50	25	5	1.5	18.5	20	67	40	42	R15	4	7	-
R0671 030 00	R0673 030 00	R1331 730 50	30	7	2.1	23.5	23.5	79	47	49	R18	4.5	7	-
R0671 040 00	R0673 040 00	R1331 740 50	40	13	3.9	27.5	31	91	62	66	R23	6	7	-
R0671 050 00	R0673 050 00	R1331 750 50	50	22	6.6	34.5	37.5	113	75	79	R28	7	4	30

²⁾ Maximum fill volume for Rexroth Linear Bushings in the housing

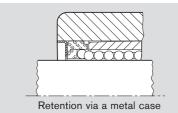
The shown fill volumes for the initial lubrication and maintenance lubrication apply to Linear sets R1037 / R1038.


custom-built housing with deviating grease nipple dimensions of the shaft diameter influences the fill volumes of the initial lubrication.


Super-Linear Bushings 🖾 und 🗉

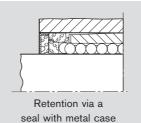
Custom-Built Housings - Retention

Super Linear Bushings closed

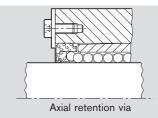

- · Retaining rings
- Metal case
- Seal with metal case
- Specialty construction

Shaft	Retaining rin	igs DIN 471	Retaining rings DIN 472				
Ød	Part numbers	Dimensions	Part numbers	Dimensions			
[mm]		[mm]		[mm]			
10	R3410 763 00	19 x 1.2	R3410 221 00	19 x 1			
12	R3410 714 00	22 x 1.2	R3410 209 00	22 x 1			
16	R3410 715 00	27 x 1.2 ¹⁾	R3410 210 00	26 x 1.2			
20	R3410 716 00	33 x 1.5 ¹⁾	R3410 211 00	32 x 1.2			
25	R3410 717 00	42 x 1.75	R3410 212 00	40 x 1.75			
30	R3410 718 00	48 x 1.75	R3410 213 00	47 x 1.75			
40	R3410 719 00	62 x 2	R3410 214 00	62 x 2			
50	R3410 720 00	75 x 2.5	R3410 215 00	75 x 2.5			

¹⁾ Not to DIN 471.


Seals closed Materials:

- Metal case
- Elastomer seal



Metal case closed Material: Steel

Seal Metal case

screws and cover plates

Shaft	Dime	ensions	[mm]	Part numbers
Ød	D ¹⁾	b ₁	b_2	Seals Metal cases
[mm]		+0.3	+0.5	
10	19	3	3	R1331 610 00 R0901 184 00
12	22	3	3	R1331 612 00 R0901 074 00
16	26	3	3	R1331 616 00 R0901 075 00
20	32	4	4	R1331 620 00 R0901 076 00
25	40	4	4	R1331 625 00 R0901 077 00
30	47	5	5	R1331 630 00 R0901 078 00
40	62	5	5	R1331 640 00 R0901 079 00
50	75	6	6	R1331 650 00 R0901 115 00

¹⁾ The outside diameter D has been manufactured with an oversize of approximately 0.1 mm. No additional retention is required.

Super Linear Bushings open type

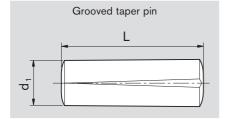
 axial and rotary retention by means of grooved taper pins

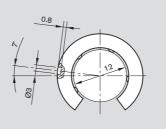
Notes for mounting:

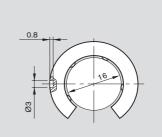
Open-type Super Linear Bushings are delivered with a ready-made locating pin hole. This hole is marked with a 🛱 from shaft diameter 25 upwards.

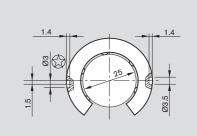
The grooved locating pin must be driven in to the depth shown in the illustrations, as applicable, at the time of mounting. The outer diameter of the Super Linear Bushing must then be reduced until the bushing can be slipped past the pin. When the linear bushing is aligned in the housing bore, the taper pin will engage in the retaining hole.

Size of the hole through housing for grooved locating pin:

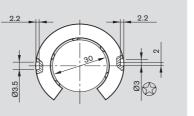

Shaft diameters 12 to 40: Ø 3.0 H11 (Grooved pin ISO 8744-3x ...-St)

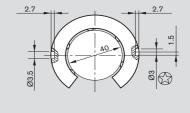

Shaft diameter 50: Ø 5.0 H1 1 (Grooved pin ISO 8744-5x ...-SA)

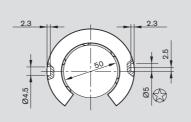

Super Linear Bushings for shaft diameters 25 to 50 are provided with 2 locating pin holes.

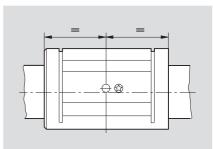

The second locating pin hole (\emptyset 3.5 for shaft diameters 25,30 and 40, and \emptyset 4.5 for shaft diameter 50) is provided as an alternative means for retention of the Linear Bushing.

The original locating pin holes are marked with a star \bigotimes (see illustration).

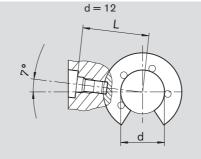


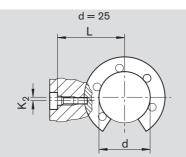


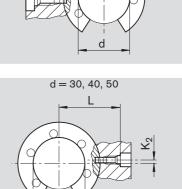


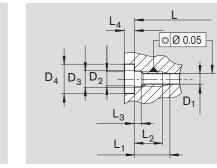


Shaft Ø d	Dimensio	ons [mm]	Mounting hole for grooved taper pin	Part numbers
[mm]	d ₁	L	[mm]	
12 40	3	8.2	Ø 3 H11	R3425 013 00
	3	10.2		R3425 014 00
	3	14.2		R3425 015 00
50	5	20.4	Ø 5 H11	R3425 016 00
	5	14		R3425 017 00

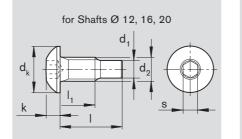

d = 16, 20

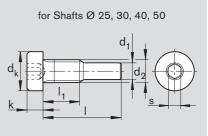

Super-Linear Bushings 🖾 und 🗉


Custom-Built Housings


 axial and rotary retention by means of locating screw

Points to note when mounting: Open type Standard Linear Bushings have been provided with the necessary retention hole. This hole is marked with a 💬 from shaft diameter 25 upwards. On installation, the retention hole of the Linear Bushing must be aligned with the tapped hole in the housing. The screw is then inserted, screwed down to the specified depth and tightened to the specified torque.





Locating screws

The locating screws are self-aligning.

3

Shaft	Dimensions [mm]												Locating	screw					
[mm]																		Part numbers	Tightening
Ød	L	K_2	L ₁	L_2	L ₃	L_4	D ₁	D_2	D_3	D_4	d_2	d_k	d_1	1	I_1	k	s		torque
				min.	+0,2	min	+0,1		H13	H13									[Nm]
12	18.8 _{-0.1}	-	7.2 _{max}	5.2	1.3	2.5	3.1	M4	4.5	8	M4	7.6	3	8.45	4.5	2.2	2.5	R3429 008 01	1.9
16	22.5 _{-0.1}	0	8.5 ^{+0.2}	6.5	1.3	2.5	3.1	M4	4.5	8	M4	7.6	3	10.15	5.7	2.2	2.5	R3429 009 01	1.9
20	25.5 _{-0.1}	0	8.5+0.2	6.5	1.3	2.5	3.1	M4	4.5	8	M4	7.6	3	10.15	5.7	2.2	2.5	R3429 009 01	1.9
25	33.05 _{-0.1}	1.5	10+0.2	8	2	3.2	3.1	M4	4.5	8	M4	7	3	14.1	6.5	2.8	2.5	R3427 009 09	1.9
30	36 _{-0.15}	2	10 ^{+0.2}	8	2	3.2	3.1	M4	4.5	8	M4	7	3	14.1	6.5	2.8	2.5	R3427 009 09	1.9
40	42.9 _{-0.15}	1.5	10+0.2	8	2	3.2	3.1	M4	4.5	8	M4	7	3	14.1	6.5	2.8	2.5	R3427 009 09	1.9
50	58.5 _{-0.2}	2.5	17.5 ^{+0.5}	13.5	3.7	6	5.1	M8	9	15	M8	13	5	22.8	12.5	5	5	R3427 005 09	16

Seals open

Materials:

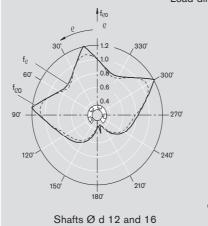
- Metal case
- · Elastomer seal

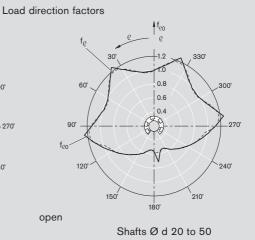
Shaft	Dimensi	ons [mm]	Angle [°]	Part numbers	
Ød	D ¹⁾	b	α ²⁾	Seals	
[mm]		+0.1			
		-0.2			
12	22	3	66	R1331 712 50	
16	26	3	68	R1331 716 50	OF
20	32	4	55	R1331 720 50	UE
25	40	4	57	R1331 725 50	
30	47	5	57	R1331 730 50	
40	62	5	56	R1331 740 50	
50	75	6	54	R1331 750 50	

¹⁾ Outside diameter D is about 0.3 mm oversized. No retaining elements required. Additional means of retention recommended for applications subject to vibration or high acceleration rates.

 $^{\mbox{\tiny 2)}}$ Lower limit, measured when mounted in a bore of nominal diameter D.

Super-Linear Bushings 🖾


Super Linear Bushing **D** with Self-alignment

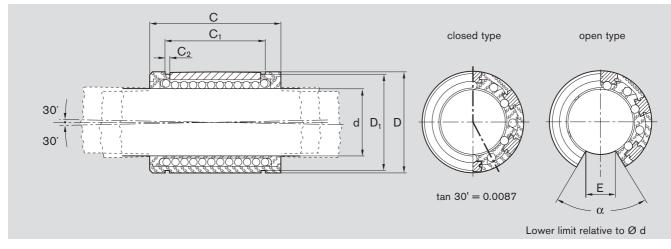

Super Linear Bushings, R0670 closed type

Super Linear Bushings, R0671 open type

Structural design

- Ball retainer with polyamide outer sleeve
- Hardened steel segmental load bearing plates with ground ball tracks
- Balls of anti-friction bearing steel
- Automatic compensation of alignment errors up to 30'
- Without seals
- With internal/separate seals

Shaft	Part nun	Mass	
Ød	without seal	with two internal	
[mm]		seals	[kg]
10	R0670 010 00	R0670 210 40	0.017
12	R0670 012 00	R0670 212 40	0.023
16	R0670 016 00	R0670 216 40	0.028
20	R0670 020 00	R0670 220 40	0.061
25	R0670 025 00	R0670 225 40	0.122
30	R0670 030 00	R0670 230 40	0.185
40	R0670 040 00	R0670 240 40	0.360
50	R0670 050 00	R0670 250 40	0.580


With one internal seal: R0670 1.. 40.

Shaft			Mass	
Ød	without seal	with two internal	with two internal	
		seals	seals and	
			seal strip	
[mm]				[kg]
12	R0671 012 00	R0671 212 40	R0671 212 45	0.018
16	R0671 016 00	R0671 216 40	R0671 216 45	0.022
20	R0671 020 00	R0671 220 40	R0671 220 45	0.051
25	R0671 025 00	R0671 225 40	R0671 225 45	0.102
30	R0671 030 00	R0671 230 40	R0671 230 45	0.155
40	R0671 040 00	R0671 240 40	R0671 240 45	0.300
50	R0671 050 00	R0671 250 40	R0671 250 45	0.480

With internal seal: R0671 1.. 40.

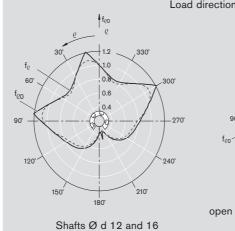
For dimensions, see section "Custom-housing".

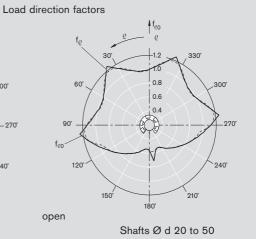
clos	ed ty	ype																
	D	Dimen	sions [mm]		No. of ball			Radial	clearan	ce[µm]			Lo	ad capac	ities [N]		
Ød	D	С	C ₁	C_2	D ₁	circuits			s	haft/bor	Э			dyn	. C	stat.	C ₀	
		h13	H13				h7/H7	h7/JS7	h6/JS6	h6/K6	h7/K7	h7/M7	h6/M6	min	max	min	max	
10	19	29	21.6	1.3	18	5	+40	+30	+23	+18	+25	+19	+12	600	820	330	480	
							+11	0	+1	-3	-4	-10	-9					
12	22	32	22.6	1.3	21	5	+43	+33	+25	+21	+28	+22	+15	830	1140	420	620	-
							+12	+1	+2	-3	-3	-9	-9					
16	26	36	24.6	1.3	24.9	5	+43	+33	+25	+21	+28	+22	+15	1020	1400	530	780	-
							+12	+1	+2	-3	-3	-9	-9					
20	32	45	31.2	1.6	30.5	6	+49	+37	+28	+23	+29	+24	+16	2020	2470	1050	1340	-
							+13	0	+1	-4	-6	-12	-11					
25	40	58	43.7	1.85	38.5	6	+49	+37	+28	+23	+29	+24	+16	3950	4820	2180	2790	-
							+13	0	+1	-4	-6	-12	-11					
30	47	68	51.7	1.85	44.5	6	+49	+37	+28	+23	+29	+24	+16	4800	5860	2790	3570	-
							+13	0	+1	-4	-6	-12	-11					
40	62	80	60.3	2.15	58.5	6	+57	+42	+31	+25	+30	+27	+16	8240	10070	4350	5570	-
							+14	-1	+1	-4	-8	-16	-13					
50	75	100	77.3	2.65	71.5	6	+57	+42	+31	+25	+30	+27	+16	12060	14730	6470	8280	-
							+14	-1	+1	-4	-8	-16	-13					

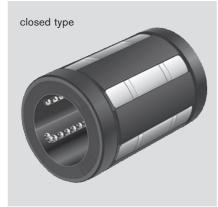
ope	n																
		Dim	ensio	ns [mn	n]		Angle	No. of			Radial of	clearance	e [µm]			Load capa	cities ^{1]} [N]
Ød	D	С	C_1	C_2	D_1	Е	α	ball			sh	naft/bore	;				
		h13	H13				[°]	circuits	h7/H7	h7/JS7	h6/JS6	h6/K6	h7/K7	h7/M7	h6/M6	dyn. C	stat. C _o
12	22	32	22.6	1.3	21	6.5	66	4	+43	+33	+25	+21	+28	+22	+15	1060	510
									+12	+1	+2	-3	-3	-9	-9		
16	26	36	24.6	1.3	24.9	9	68	4	+43	+33	+25	+21	+28	+22	+15	1280	630
									+12	+1	+2	-3	-3	-9	-9		
20	32	45	31.2	1.6	30.5	9	55	5	+49	+37	+28	+23	+29	+24	+16	2100	1070
									+13	0	+1	-4	-6	-12	-11		
25	40	58	43.7	1.85	38.5	11.5	57	5	+49	+37	+28	+23	+29	+24	+16	4130	2250
									+13	0	+1	-4	-6	-12	-11		
30	47	68	51.7	1.85	44.5	14	57	5	+49	+37	+28	+23	+29	+24	+16	5020	2880
									+13	0	+1	-4	-6	-12	-11		
40	62	80	60.3	2.15	58.5	19.5	56	5	+57	+42	+31	+25	+30	+27	+16	8620	4480
									+14	-1	+1	-4	-8	-16	-13		
50	75	100	77.3	2.65	71.5	22.5	54	5	+57	+42	+31	+25	+30	+27	+16	12500	6620
									+14	-1	+1	-4	-8	-16	-13		

¹⁾ The load capacities stated are minimum values as the postion and direction of load cannot always be precisely defined $\alpha = 0^{\circ}$.

Super Linear Bushings 🗉


Super Linear Bushing without Self-alignment

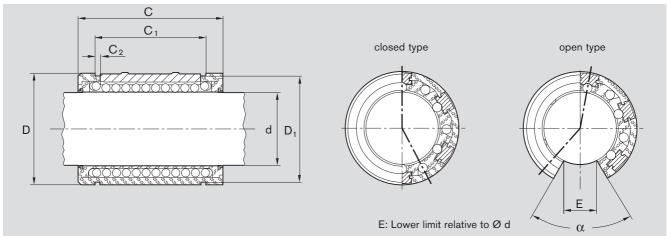

Super Linear Bushings, R0672 closed type


Super Linear Bushings, R0673 open type

Structural design

- Ball retainer with polyamide outer sleeve
- Hardened steel segmental load bearing plates with ground ball tracks
- Balls of anti-friction bearing steel
- Without seals
- With internal/separate seals

Shaft	Part nur	nbers	Mass
Ød	without seals	with two internal	
[mm]		seals	[kg]
10	R0672 010 00	R0672 210 40	0.017
12	R0672 012 00	R0672 212 40	0.023
16	R0672 016 00	R0672 216 40	0.028
20	R0672 020 00	R0672 220 40	0.061
25	R0672 025 00	R0672 225 40	0.122
30	R0672 030 00	R0672 230 40	0.185
40	R0672 040 00	R0672 240 40	0.360
50	R0672 050 00	R0672 250 40	0.580


With one internal seal: R0672 1.. 40.

Shaft			Mass	
Ød	without seals	with two internal seals	with two internal seals and seal strip	
[mm]				[kg]
12	R0673 012 00	R0673 212 40	R0673 212 45	0.018
16	R0673 016 00	R0673 216 40	R0673 216 45	0.022
20	R0673 020 00	R0673 220 40	R0673 220 45	0.051
25	R0673 025 00	R0673 225 40	R0673 225 45	0.102
30	R0673 030 00	R0673 230 40	R0673 230 45	0.155
40	R0673 040 00	R0673 240 40	R0673 240 45	0.300
50	R0673 050 00	R0673 250 40	R0673 250 45	0.480

With one internal seal: R0673 1.. 40.

For dimensions, see section "Custom-housing".

close	ed ty	/pe															
	D	imens	sions [mm]		No. of			Radial	clearanc	e [µm]			Lo	ad capaci	ities [N]	
Ød	D	С	C_1	C_2	D ₁	ball			S	haft/bor	е			dyn	. C	stat.	C ₀
		h13	H13			circuits	h7/H7	h7/JS7	h6/JS6	h6/K6	h7/K7	h7/M7	h6/M6	min	max	min	max
10	19	29	21.6	1.3	18	5	+40	+30	+23	+18	+25	+19	+12	600	820	330	480
							+11	0	+1	-3	-4	-10	-9				
12	22	32	22.6	1.3	21	5	+43	+33	+25	+21	+28	+22	+15	830	1140	420	620
							+12	+1	+2	-3	-3	-9	-9				
16	26	36	24.6	1.3	24.9	5	+43	+33	+25	+21	+28	+22	+15	1020	1400	530	780
							+12	+1	+2	-3	-3	-9	-9				
20	32	45	31.2	1.6	30.5	6	+49	+37	+28	+23	+29	+24	+16	2020	2470	1050	1340
							+13	0	+1	-4	-6	-12	-11				
25	40	58	43.7	1.85	38.5	6	+49	+37	+28	+23	+29	+24	+16	3950	4820	2180	2790
							+13	0	+1	-4	-6	-12	-11				
30	47	68	51.7	1.85	44.5	6	+49	+37	+28	+23	+29	+24	+16	4800	5860	2790	3570
							+13	0	+1	-4	-6	-12	-11				
40	62	80	60.3	2.15	58.5	6	+57	+42	+31	+25	+30	+27	+16	8240	10070	4350	5570
							+14	-1	+1	-4	-8	-16	-13				
50	75	100	77.3	2.65	71.5	6	+57	+42	+31	+25	+30	+27	+16	12060	14730	6470	8280
							+14	-1	+1	-4	-8	-16	-13				

ope	open																
		Dim	ensio	ns [mn	n]		Angle	No. of			Radial o	clearance	e [µm]			Load capa	cities ¹⁾ [N]
Ød	D	С	C_1	C_2	D ₁	Е	α	ball			sh	naft/bore	;				
		h13	H13				[°]	circuits	ts h7/H7 h7/JS7 h6/JS6 h6/K6 h7/K7 h7						h6/M6	dyn. C	stat. C ₀
12	22	32	22.6	1.3	21	6.5	66	4	+43	+33	+25	+21	+28	+22	+15	1060	510
									+12	+1	+2	-3	-3	-9	-9		
16	26	36	24.6	1.3	24.9	9	68	4	+43	+33	+25	+21	+28	+22	+15	1280	630
									+12	+1	+2	-3	-3	-9	-9		
20	32	45	31.2	1.6	30.5	9	55	5	+49	+37	+28	+23	+29	+24	+16	2100	1070
									+13	0	+1	-4	-6	-12	-11		
25	40	58	43.7	1.85	38.5	11.5	57	5	+49	+37	+28	+23	+29	+24	+16	4130	2250
									+13	0	+1	-4	-6	-12	-11		
30	47	68	51.7	1.85	44.5	14	57	5	+49	+37	+28	+23	+29	+24	+16	5020	2880
									+13	0	+1	-4	-6	-12	-11		
40	62	80	60.3	2.15	58.5	19.5	56	5	+57	+42	+31	+25	+30	+27	+16	8620	4480
									+14	-1	+1	-4	-8	-16	-13		
50	75	100	77.3	2.65	71.5	22.5	54	5	+57	+42	+31	+25	+30	+27	+16	12500	6620
									+14	-1	+1	-4	-8	-16	-13		

 $^{_{1)}}$ The stated load capacities apply when the load is acting along the line $~\alpha=0^{\circ}.$

Linear Sets with Super Linear Bushings or

Overview

	Linear	Sets	Tandem Linear Sets
	Super Linear E with self-al Super Linear E without self-	ignment Bushings ₪	Super Linear Bushings 亟 with self-alignment
	Aluminum housing	Cast iron housing	Aluminum housing
type -precision guidance with extreme mounting. Version with fixed bore diameter. ble type	R1035	R1065	R1085
when zero clearance or preload ed. The desired radial clearance ished by means of an adjusting hese Linear Sets are adjusted learance before delivery.	R1036	R1066	R1032
pe guideways when the shafts must orted and high rigidity is required.	R1037	R1067	R1087
pe, adjustable when zero clearance or preload ed. The desired radial clearance ished by means of an adjusting hese Linear Sets are adjusted learance before delivery.	R1038	R1068	R1034
e opening forces from all directions without n of load capacity.	R1071	R1073	
e opening, adjustable when zero clearance or preload ed. The desired radial clearance ished by means of an adjusting hese Linear Sets are adjusted learance before delivery.	R1072	R1074	
type nent was developed as a comple- our Linear Set series for use in ons requiring the shaft to be d at right angles to the mounting		R1081	R1083

Closed ty

For high-p ease of m working b

Adjustable

For use w is required is establis screw. The to zero cle

Open type

For long g be suppor

Open type

For use w is required is establis screw. The to zero cle

With side

Handles for reduction

With side

For use w is required is establis screw. The to zero cle

Flanged t

This eleme ment to ou application arranged base.

Advantages/Mounting Instructions

Advantages High load capcity and rigidity	These Linear Sets afford high rigidity irrespec even when their high load-carrying capacities	
Compact block design and ease of mounting in the aluminm version	The Super Linear Bushing is completely enclo against all external impacts. Tapped through-holes make it possible to inse A fitting edge along the block facilitates lining alignment of the assembly. Center-bores are p holes for extra stability.	ert the screws from above or below. 9 up during installation and prevents mis-
High precision and reliability	The housing design and the integral Super Lin functional reliability.	near Bushing ensure high precision and
Zero-clearance	The adjustable versions can be used to achiev	e zero-clearance assemblies.
Operating temperatures	–20 °C to 100 °C.	
Mounting Instructions Radial clearance	The radial clearance values given in the tables methods and are representative of the values practice. Adjustable types of Linear Sets are a screwed down) on a shaft of diameter accurate before leaving the factory.	to be expected in actual adjusted to zero clearance (when
Vertical dimensions	The tables for Linear Sets contain tolerance v tolerance values have been obtained by statis the values to be expected in actual practice.	
Screws	We recommend screws to ISO 4762-8.8 for r	nounting Linear Sets.
Lubrication	Whether grease is being applied for the first t be inserted in the bushing. Add grease until the	
Notes on mounting of Linear Sets with side opening	 Without fitting edge Align first shaft mounted on shaft support rail and screw down support rail. Align second shaft to ensure parallelism and screw down support rail. Push Linear Sets onto shafts and screw down on the machine table. 	
	 With fitting edge Push first shaft mounted on shaft support rail into contact with fitting edge and screw down support rail. Align second shaft to ensure parallelism and screw down support rail. Push Linear Sets onto the shafts. Further assembly: a) With two fitting edges (one on machine base and one on table): Push the Linear Sets on the first shaft into contact with the fitting 	b) With only one fitting edge (on the

edge on the machine table and screw down.

Screw down the Linear Sets on the second

shaft to the machine table.

machine base): Screw Linear Sets down to the m

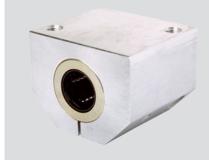
Screw Linear Sets down to the machine table.

Linear Bushings | R310A 3100

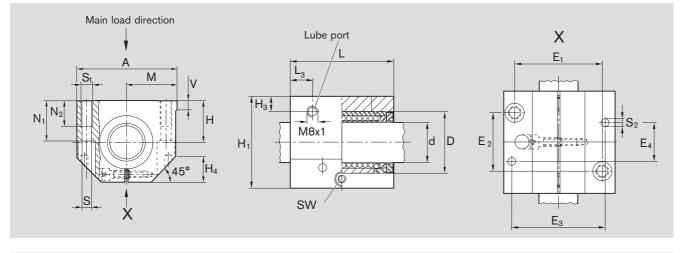
Linear-Sets wit Super Linear Bushings 🖾 or 🗉, Aluminum housing

Linear Sets, R1035 closed type

Linear Sets, R1036 adjustable type


Structural design

- Precision housing, lightweight series (Aluminum)
- Super Linear Bushing with or without self-alignment
- External seals
- Fully sealed
- Easy re-lubrication



Shaft	Part nu	mbers	Mass
Ød	with Super Linear Bushing 🗖	with Super Linear Bushing 🗉	
	easy re-lubrication	easy re-lubrication	
[mm]	with two seals	with two seals	[kg]
10	R1035 610 20	R1035 810 20	0.10
12	R1035 612 20	R1035 812 20	0.13
16	R1035 616 20	R1035 816 20	0.20
20	R1035 620 20	R1035 820 20	0.34
25	R1035 625 20	R1035 825 20	0.65
30	R1035 630 20	R1035 830 20	0.97
40	R1035 640 20	R1035 840 20	1.80
50	R1035 650 20	R1035 850 20	3.00

adjustable type

Shaft	Part nu	mbers	Mass
Ød	with Super Linear Bushing 🗖	with Super Linear Bushing 🗉	
	easy re-lubrication	easy re-lubrication	
[mm]	with two seals	with two seals	[kg]
10	R1036 610 20	R1036 810 20	0.10
12	R1036 612 20	R1036 812 20	0.13
16	R1036 616 20	R1036 816 20	0.20
20	R1036 620 20	R1036 820 20	0.34
25	R1036 625 20	R1036 825 20	0.65
30	R1036 630 20	R1036 830 20	0.97
40	R1036 640 20	R1036 840 20	1.80
50	R1036 650 20	R1036 850 20	3.00

								Dimensi	ons [m	m]											
Ød	D	H ¹⁾	H ₁	M ¹⁾	Α	L	E ₁	E ₂	Ε ₃	E_4	S ²⁾	S ₁	S ₂ ³⁾	N_1	N_2	H_3	L ₃	V	SW	H_4	
		+0.008		±0.01																	
		-0.016																			
10	19	16	31.5	20	40	36	29±0.15	20±0.15	31	29	4.3	M5	4	15	11	10	10.5	5	2.5	10	
12	22	18	35	21.5	43	39	32±0.15	23±0.15	34	32	4.3	M5	4	16.5	11	10	10.5	5	2.5	10	
16	26	22	42	26.5	53	43	40±0.15	26±0.15	42	35	5.3	M6	4	21	13	10	11.5	5	3	13	
20	32	25	50	30	60	54	45±0.15	32±0.15	50	45	6.6	M8	5	24	18	10	13.5	5	4	16	
25	40	30	60	39	78	67	60±0.15	40±0.15	64	20	8.4	M10	6	29	22	10	15	6.5	5	20	
30	47	35	70	43.5	87	79	68±0.15	45±0.15	72	30	8.4	M10	6	34	22	11.5	16	8	5	22	
40	62	45	90	54	108	91	86±0.15	58±0.15	90	35	10.5	M12	8	44	26	14	18	10	6	28	
50	75	50	105	66	132	113	108±0.20	50±0.20	108	42	13.5	M16	10	49	34	12.5	22	12	8	37	

Shaft		Radial clea	rance [µm]	Load capa	cities ⁴⁾ [N]
Ød	R10	35	R1036	dyn. C	stat. C ₀
	Sha	aft			
[mm]	h6	h7			
10	+36	+40		730	380
	+9	+11	prior down		
12	+38	+43	тр дұр	1020	490
	+10	+12	wed		
16	+38	+43	- - - - - - - - - - - - - - - - - - -	1250	620
	+10	+12			
20	+43	+49	,hei	2470	1340
	+11	+13	t) w		
25	+43	+49	zero-clearance or (lower limit) when	4820	2790
	+11	+13	er er		
30	+43	+49	low	5860	3570
	+11	+13	∠ to		
40	+50	+57	Adjusted to zero-clearance on h5 shaft prior to delivery (lower limit) when screwed dowr	10070	5570
	+12	+14	just delli		
50	+50	+57	to o	14730	8280
	+12	+14			

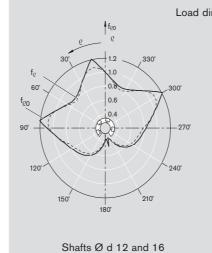
¹⁾ When screwed down, relative to shaft nominal dimension d.

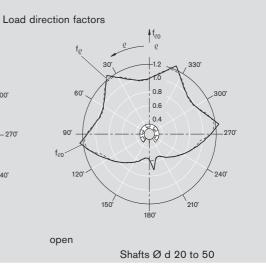
²⁾ Mounting screws to ISO 4762-8.8.

³⁾ Center bores for locating pin holes

⁴⁾ The given load capacities are valid for the main load direction.

If the load direction is not the main load direction, the load capacties are to be multiplied by the following factors: Shafts Ø 10 to 16: f = 0.82 $f_0 = 0.86$ Shafts Ø 20 to 50: f = 0.82 $f_0 = 0.78$

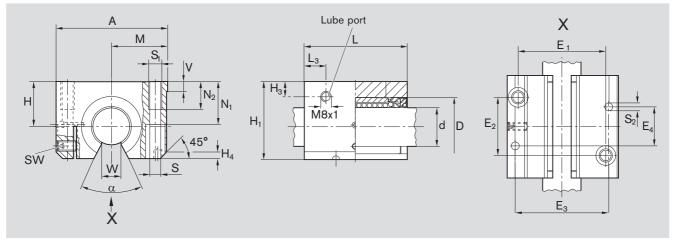

Linear Sets with Super Linear Bushings 🖾 or 🗉, Aluminum housing


Linear Sets, R1037 open type

Linear Sets, R1038 open type, adjustable

Structural design

- Precision housing, lightweight series (Aluminum)
- Retention by means of a grooved taper pin
- Super Linear Bushing with or without self-alignment feature
- External seals
- · Easy re-lubrication



Shaft	Part nu	mbers	Mass
Ød	with Super Linear Bushing 🗖	with Super Linear Bushing 🗉	
	easy re-lubrication	easy re-lubrication	
[mm]	with two seals	with two seals	[kg]
12	R1037 612 20	R1037 812 20	0.11
16	R1037 616 20	R1037 816 20	0.17
20	R1037 620 20	R1037 820 20	0.30
25	R1037 625 20	R1037 825 20	0.57
30	R1037 630 20	R1037 830 20	0.86
40	R1037 640 20	R1037 840 20	1.60
50	R1037 650 20	R1037 850 20	2.60

Shaft	Part nu	mbers	Mass
Ød	with Super Linear Bushing 🗖	with Super Linear Bushing 🗉	
	easy re-lubrication	easy re-lubrication	
[mm]	with two seals	with two seals	[kg]
12	R1038 612 20	R1038 812 20	0.11
16	R1038 616 20	R1038 816 20	0.17
20	R1038 620 20	R1038 820 20	0.30
25	R1038 625 20	R1038 825 20	0.57
30	R1038 630 20	R1038 830 20	0.86
40	R1038 640 20	R1038 840 20	1.60
50	R1038 650 20	R1038 850 20	2.60

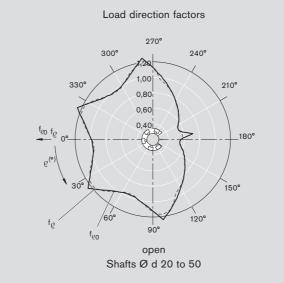
								Din	nensio	ns [r	nm]											
Ød	D	H ²⁾	H ₁	M ²⁾	Α	L	E ₁	E ₂	Ε ₃	E_4	S ³⁾	S ₁	S ₂ ⁴⁾	N ₁	N_2	Η ₃	L ₃	V	SW	W ⁵⁾	H_4	
		+0.008		±0.01																		
		-0.016																				
12	22	18	28	21.5	43	39	32±0.15	23±0.15	34	32	4.3	M5	4	16.5	11	10	10.5	5	2.5	6.5	1.5	
16	26	22	35	26.5	53	43	40±0.15	26±0.15	42	35	5.3	M6	4	21	13	10	11.5	5	2.5	9	2.5	
20	32	25	42	30	60	54	45±0.15	32±0.15	50	45	6.6	M8	5	24	18	10	13.5	5	2.5	9	3.5	
25	40	30	51	39	78	67	60±0.15	40±0.15	64	20	8.4	M10	6	29	22	10	15	6.5	3	11.5	4	
30 ¹⁾	47	35	60	43.5	87	79	68±0.15	45±0.15	72	30	8.4	M10	6	34	22	11.5	16	8	3	14	6	
40 ¹⁾	62	45	77	54	108	91	86±0.15	58±0.15	90	35	10.5	M12	8	44	26	14	18	10	4	19.5	6	
50 ¹⁾	75	50	88	66	132	113	108±0.20	50±0.20	108	42	13.5	M16	10	49	34	12.5	22	12	5	22.5	6	

Shaft	Angle	Ra	dial cleara	ance ⁶⁾ [µm]	Load capacities ⁷⁾ [N]						
Ød	α	R10 Sha		R1038	dyn. C	stat. C ₀					
[mm]	[°]	h6	h7								
12	66	+28 -1	+33 +1		1060	510					
16	68	+28 -1	+33 +1	ance on h5 (lower limit) down	1280	630					
20	55	+31 -2	+37 0		2100	1070					
25	57	+31 -2	+37 0	zero clea o delivery screwed	4130	2250					
30 ¹⁾	57	+31 -2	+37 0	ed to ze prior to c when sc	5020	2880					
40 ¹⁾	56	+35 -3	+42 -1	Adjusted to zero clea shaft prior to delivery when screwed	8620	4480					
50 ¹⁾	54	+35 -3	+42 -1	A Is	12500	6620					

- ¹⁾ In these sizes, the locating screw is on the opposite side to that shown in the illustration.
- ²⁾ When screwed down, relative to shaft nominal dimension d.
- ³⁾ Mounting screws to ISO 4762-8.8
- ⁴⁾ Center-bores for locating pin holes
 ⁵⁾ Minimum dimension based on shaft
- diameter d.
- ⁶⁾ When screwed down.
- ⁷⁾ The load capacities apply when the load is acting along the line $\varrho = 0^{\circ}$.

Linear Sets with Super Linear Bushings 🙆 or 🗉, Aluminum housing

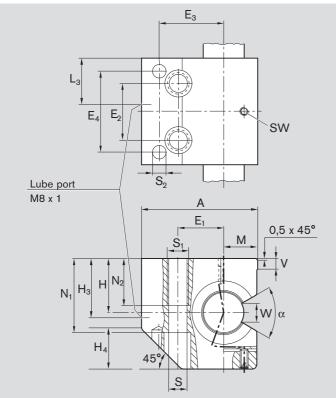
Linear Sets, R1071 with side opening

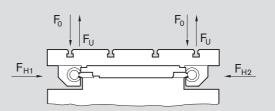

Linear Sets, R1072 with side opening, adjustable

Structural design

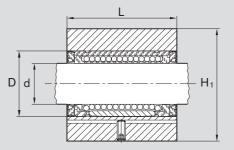
- Precision housing, lightweight series (aluminum)
- Retention by means of grooved taper pin
- Super Linear Bushing with or without self-alignment feature
- External seals
- · Easy re-lubrication

The load carrying capacity of open linear bushings is considerably reduced when the load is applied to the "open" portion of the bushing. The Linear Set with Side Opening, lightweight series, has been developed to overcome this disadvantage and to permit selective circumferential positioning of the open linear bushing.




Shaft	Part nu	mbers	Mass
Ød	with Super Linear Bushing 🗖	with Super Linear Bushing 🗉	
	easy re-lubrication	easy re-lubrication	
[mm]	with two seals	with two seals	[kg]
20	R1071 620 20	R1071 820 20	0.42
25	R1071 625 20	R1071 825 20	0.8
30	R1071 630 20	R1071 830 20	1.2
40	R1071 640 20	R1071 840 20	2.0
50	R1071 650 20	R1071 850 20	3.2

side opening, adjustable



Shaft	Part nu	mbers	Mass
Ød	with Super Linear Bushing 🖾	with Super Linear Bushing 🗉	
	easy re-lubrication	easy re-lubrication	
[mm]	with two seals	with two seals	[kg]
20	R1072 620 20	R1072 820 20	0.42
25	R1072 625 20	R1072 825 20	0.8
30	R1072 630 20	R1072 830 20	1.2
40	R1072 640 20	R1072 840 20	2.0
50	R1072 650 20	R1072 850 20	3.2

 $\begin{array}{rcl} \mbox{Maximum permissable loads:} \\ \mbox{F}_0 &= 1,10\cdot C_0 & \mbox{F}_U &= 1,11\cdot C_0 \\ \mbox{F}_{H1} &= C_0 & \mbox{F}_{H2} &= C_0 \end{array}$

								[Dimen	sions	[mm]										
Ød	D	H ²⁾	H ₁	M ²⁾	Α	L	E ₁	E ₂	Ε ₃	E_4	S ³⁾	S ₁	S ₂ ⁴⁾	N_1	N_2	V	SW	W ⁵⁾	Η ₃	L ₃	H_4
		+0.008		±0.01			±0.15	±0.15													
		-0.016																			
20 ¹⁾	32	30	60	17	60	54	22	30	33	42	8.4	M10	6	42	15	5	2.5	9	32	23.5	22
25 ¹⁾	40	35	72	21	75	67	28	36	42	52	10.5	M12	8	50	18	6.5	3	11.5	38	29	26
30	47	40	82	25	86	79	34	42	48	60	13.5	M16	10	55	24	8	3	14	44	34	30
40	62	45	100	32	110	91	43	48	62	68	15.5	M20	12	67	30	10	4	19.5	50	40	38
50	75	50	115	38	127	113	50	62	70	85	17.5	M20	12	78	30	12	5	22.5	56	48	45

Shaft	Angle	Ra	dial cleara	nce ⁶⁾ [µm]	Load capa	cities ⁷⁾ [N]
Ød	α	R10	71	R1072	dyn. C	stat. C ₀
		Sha	aft			
[mm]	[°]	h6	h7			
201)	55	+31	+37	Ę	2100	1070
		-2	0	e on or to down		
25 ¹⁾	57	+31	+37	slearance o limit) prior screwed d	4130	2250
		-2	0	clearan limit) p screw		
30	57	+31	+37		5020	2880
		-2	0	l zero-c (lower when s		
40	56	+35	+42	o wl cz	8620	4480
		-3	-1	Adjusted 15 shaft (livery to v		
50	54	+35	+42	Adjus h5 shr delivery	12500	6620
		-3	-1	de		

- ¹⁾ In these sizes, the locating screw is on the opposite side to that shown in the illustration.
- When screwed down, relative to shaft nominal dimension d.
- ³⁾ Mounting screws to ISO 4762-8.8.
- ⁴⁾ Center-bores for locating pin holes.
- ⁵⁾ Minimum dimension based on shaft diameter d.
- ⁶⁾ When screwed down.
- $^{7)}~$ The load capacities apply when the load is acting in the direction shown by the arrows at $\rm F_{H1}~$ or $\rm F_{H2}$

The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the 'C' figures in the table must be multiplied by a factor of 1.26.

Please refer also to the mounting instructions for Linear Sets with side opening.

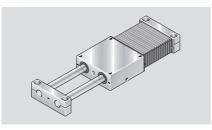
Linear Sets with Super Linear Bushings 🖾 Tandem

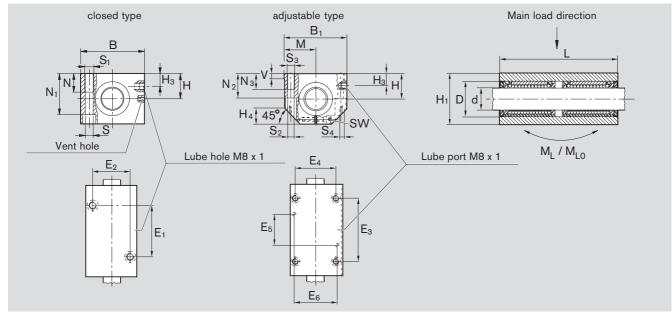
Linear Sets, R1085 closed

Linear Sets, R1032 adjustable

Structural design

- Precision Tandem Linear Set, lightweight series (aluminum)
- Two Super Linear Bushings 函 •
- External seals
- · Fully sealed
- .
- Fitting edge (for adjustable Tandem version)
- Easy re-lubrication




Ø d [mm] [kg] 12 R1085 612 20 0.27 16 R1085 616 20 0.41 20 R1085 620 20 0.72 25 R1085 625 20 1.35 30 R1085 630 20 2.01 40 R1085 640 20 3.67	Shaft	Part numbers	Mass
12 R1085 612 20 0.27 16 R1085 616 20 0.41 20 R1085 620 20 0.72 25 R1085 625 20 1.35 30 R1085 630 20 2.01 40 R1085 640 20 3.67	Ød		
16 R1085 616 20 0.41 20 R1085 620 20 0.72 25 R1085 625 20 1.35 30 R1085 630 20 2.01 40 R1085 640 20 3.67	[mm]		[kg]
20 R1085 620 20 0.72 25 R1085 625 20 1.35 30 R1085 630 20 2.01 40 R1085 640 20 3.67	12	R1085 612 20	0.27
25 R1085 625 20 1.35 30 R1085 630 20 2.01 40 R1085 640 20 3.67	16	R1085 616 20	0.41
30 R1085 630 20 2.01 40 R1085 640 20 3.67	20	R1085 620 20	0.72
40 R1085 640 20 3.67	25	R1085 625 20	1.35
	30	R1085 630 20	2.01
	40	R1085 640 20	3.67
50 R1085 650 20 6.30	50	R1085 650 20	6.30

Shaft Part numbers Mass Ød [mm] [kg] 10 R1032 610 20 0.20 12 R1032 612 20 0.27 16 R1032 616 20 0.41 20 R1032 620 20 0.72 25 R1032 625 20 1.35 2.01 30 R1032 630 20 40 R1032 640 20 3.67 6.30 50 R1032 650 20

Also available as a linear slide, see our "Linear Slide" catalog.

											Dime	ensions	s [mi	m]												
Ød	D	H ¹⁾	H_1	Н₃	M ¹⁾	В	B ₁	L	E1 ²⁾	E2 ²⁾	E3 ²⁾	E4 ²⁾	E_5	E_6	S ³⁾	S_1	S ₂ ³⁾	S ₃	S ₄ ⁴⁾	Ν	N_1	N_2	N_3	V	SW	H_4
	+	0.008		:	±0.01			:	±0.15 :	±0.15	±0.15 :	±0.15														
		0.016																								
10	19	16	31.5	9	20	-	40	70	-	-	52	29	20	31	-	-	4.3	M5	4	-	-	15	11	5	2.5	10
12	22	18	35	10	21.5	42	43	76	40	30	56	32	24	34	5.3	M6	4.3	M5	4	13	28	16.5	11	5	2.5	10
16	26	22	42	12	26.5	50	53	84	45	36	64	40	28	42	5.3	M6	5.3	M6	4	13	35	21	13	5	3	13
20	32	25	50	13	30	60	60	104	55	45	76	45	32	50	6.6	M8	6.6	M8	5	18	41	24	18	5	4	16
25	40	30	60	15	39	74	78	130	70	54	94	60	42	64	8.4	M10	8.4	M10	6	22	49	29	22	6.5	5	20
30	47	35	70	16	43.5	84	87	152	85	62	106	68	52	72	10.5	M12	8.4	M10	6	26	56	34	22	8	5	22
40	62	45	90	20	54	108	108	176	100	80	124	86	60	90	13.5	M16	10.5	M12	8	34	74	44	26	10	6	28
50	75	50	105	20	66	130	132	224	125	100	160	108	80	108	13.5	M16	13.5	M16	10	34	89	49	35	12	8	37

Shaft	Radial	cleara	ince [µm]	Lo	ad	Tipping	Moment
Ød	R10	85	R1032	capaciti	es ⁵⁾ [N]	[Ni	n]
	Sha	aft		dyn.	stat.	dyn.	stat.
[mm]	h6	h7		C	C ₀	ML	M _{LO}
10	-	-		1180	760	17	12
	_	-	ver				
12	+38	+43	shaft (lower ed down	1660	980	26	16
	+10	+12	on h5 shaft (lo screwed down				
16	+38	+43	/ed	2030	1240	35	22
	+10	+12	on h5 screw				
20	+43	+49		4010	2680	84	54
	+11	+13	nen				
25	+43	+49	arar v wl	7830	5580	205	140
	+11	+13	cle; /er)				
30	+43	+49	ero- deliv	9520	7140	289	206
	+11	+13	b ze to c				
40	+50	+57	ted to zero-clearance prior to delivery when	16360	11140	576	374
	+12	+14					
50	+50	+57	Adjusted to zero-clearance limit) prior to delivery when	23930	16560	1097	725
	+12	+14	≤ ⊒				

¹⁾ When screwed down, relative to shaft nominal dimension d.

²⁾ Shafts Ø 50: Tolerance \pm 0.2

³⁾ Mounting screws to ISO 4762-8.8.

⁴⁾ Center-bores for locating pin holes.

⁵⁾ Load capacity when both Linear Bushings are equally loaded. The load capacities stated are minimum values as the position and direction of load cannot always be precisely defined. If the load direction is not the main load direction, the load capacities

are to be multiplied by the following factors: Shafts-Ø 10 to 16: f = 0.82 $f_0 = 0.86$ Shafts-Ø 20 to 50: f = 0.82 $f_0 = 0.78$

Note on lubrication for Linear Sets R1085:

Lubricate only when shaft inserted; add lubricant until excess emerges at the vent hole.

Linear Bushings | R310A 3100

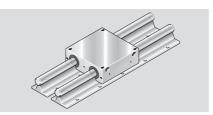
Linear Sets with Super Linear Bushings 🖾 Tandem version

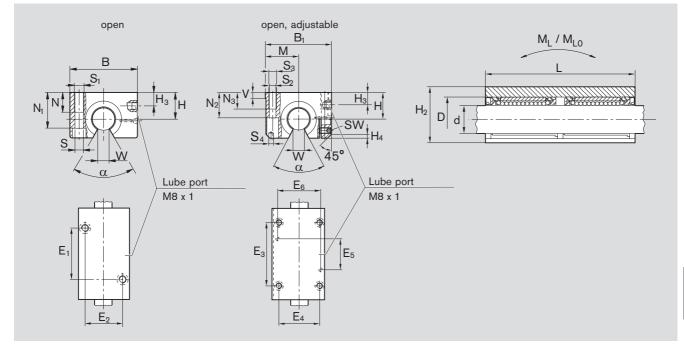
Linear-Sets, R1087 open

Linear-Sets, R1034 open, adjustable

Structural design

- Precision Tandem Linear Set, lightweight series (Aluminum)
- Two Super Linear Bushings 🖾
- Two external seals
- Fitting edge (for adjustable tandem version)
- · Easy re-lubrication


Shaft	Part numbers	Mass
Ød		
[mm]		[kg]
12	R1087 612 20	0.22
16	R1087 616 20	0.34
20	R1087 620 20	0.62
25	R1087 625 20	1.17
30	R1087 630 20	1.68
40	R1087 640 20	3.15
50	R1087 650 20	5.50


open type, adjustable

Shaft Part numbers Mass Ød [mm] [kg] R1034 612 20 0.22 12 16 R1034 616 20 0.34 20 R1034 620 20 0.62 R1034 625 20 25 1.17 30 R1034 630 20 1.68 40 R1034 640 20 3.15 R1034 650 20 5.50 50

Also available as a linear slide, see our "Linear Slide" catalog.

Dimensions [mm]

										-			5 [iiiii	· .												
ØdD	H ²⁾	H_2	H_3	M ²⁾	В	B_1	L	E1 ³⁾	E2 ³⁾	E ₃ 3)	E4 ³⁾	E_5	E_6	S ⁴⁾	S ₁	S2 ⁵⁾	S ₃	S ₄ ⁶⁾	Ν	N ₁	N_2	N_3	V	SW	W ⁷⁾	H_4
	+0.008		:	±0.01				±0.15 :	±0.15 :	±0.15 :	±0.15															
	-0.016																									
12 22	18	30 ¹⁾	10	21.5	42	43	76	40	30	56	32	24	34	5.3	M6	4.3	M5	4	13	25	16,5	11	5	2.5	6.5	1.5
16 26	22	35	12	26.5	50	53	84	45	36	64	40	28	42	5.3	M6	5.3	M6	4	13	29.5	21	13	5	2.5	9	2.5
20 32	25	42	13	30	60	60	104	55	45	76	45	32	50	6.6	M8	6.6	M8	5	18	35.5	24	18	5	2.5	9	3.5
25 40	30	51	15	39	74	78	130	70	54	94	60	42	64	8.4	M10	8.4	M10	6	22	43	29	22	6.5	3	11.5	4
30 47	35	60	16	43.5	84	87	152	85	62	106	68	52	72	10.5	M12	8.4	M10	6	26	50.5	34	22	8	3	14	6
40 62	45	77	20	54	108	108	176	100	80	124	86	60	90	13.5	M16	10.5	M12	8	34	66	44	26	10	4	19.5	6
50 75	50	88	10	66	130	132	224	125	100	160	108	80	108	13.5	M16	13.5	M16	10	34	77	49	35	12	5	22.5	6

Shaft	Angle	Radial	cleara	ance ⁸⁾	Lo	ad	Tipping	moment
Ød	α	R1087	7 [µm]	R1034	capaciti	es ⁹⁾ [N]	[Ni	m]
		Shaft			dyn.	stat.	dyn.	stat.
[mm]	[°]	h6	h7		С	C ₀	ML	M _{LO}
12	66	+28	+33		1720	1020	11	7
		-1	+1					
16	68	+28	+33	h5 ery	2080	1260	16	10
		-1	+1	ie on delive /n				
20	55	+31	+37	clearance prior to d ved down	3410	2140	48	30
		-2	0	araı or t I dc				
25	57	+31	+37	zero-clearance limit) prior to c screwed down	6710	4500	116	79
		-2	0	zero-o limit) screw				
30	57	+31	+37	o ze r lir	8150	5760	163	116
		-2	0	sted to (lower when				
40	56	+35	+42	t (lc v	14000	8960	328	212
		-3	-1	Adjusted to shaft (lower when				
50	54	+35	+42	a s	20300	13240	630	415
		-3	-1					

¹⁾ In the open type, adjustable version $H_2 = 28$ mm.

²⁾ When screwed down, relative to shaft nominal dimension d.

- ³⁾ Shafts Ø 50: Tolerance \pm 0.2
- ⁴⁾ Mounting screws to DIN 6912-8.8.
- ⁵⁾ Mounting screws to ISO 4762-8.8.
- ⁶⁾ Center bores for locating pin holes
- 7) Minimum dimension based on shaft diameter d.
- ⁸⁾ When screwed down.
- ⁹⁾ When the load capacity of both Linear Bushings is equally distributed. The given load capacities are valid for the main load capacity direction $\rho = 0^{\circ}$.

Linear Sets with Super Linear Bushings
Tandem flanged version

Linear Sets, R1083 Flanged version

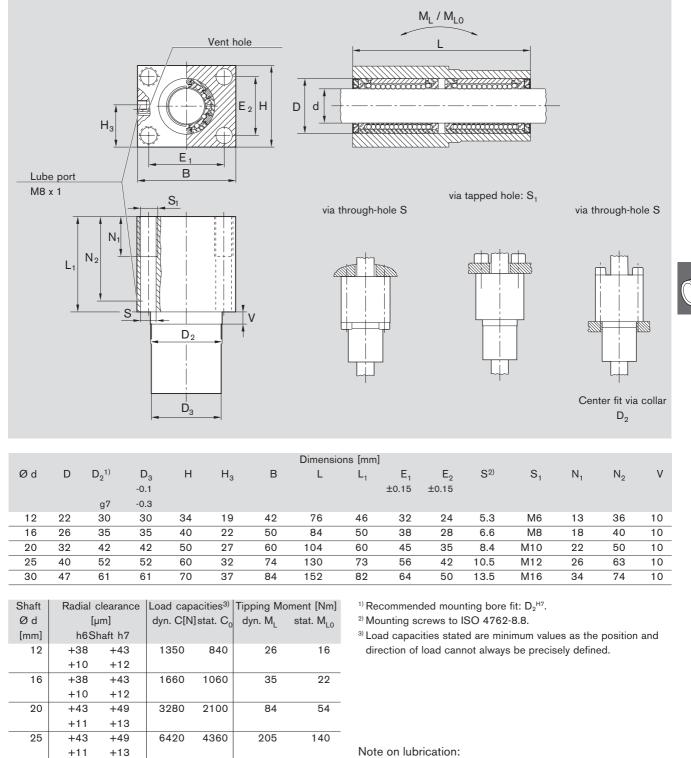
Structural desing

- Precision flanged housing, lightweight series (Aluminum)
- Two Super Linear Bushings 🕰
- Two external seals
- · Centering collar
- Fully sealed
- Tapped through holes for screwmounting from the base
- Easy re-lubrication
- Radial clearance not adjustable

Shaft	Part numbers	Mass
Ød		
[mm]		[kg]
12	R1083 612 20	0.20
16	R1083 616 20	0.32
20	R1083 620 20	0.55
25	R1083 625 20	1.00
30	R1083 630 20	1.50
	•	

30

+43


+11

+49

+13

7800

5580

Lubricate only when shaft inserted; add lubricant until excess emerges at the vent hole.

The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the 'C' figures in the table must be multiplied by a factor of 1.26.

206

289

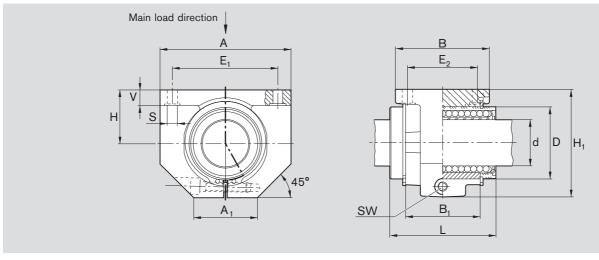
Linear Bushings | R310A 3100

Linear-Sets mit Super-Linear Bushings 🖾 oder 🗈, Guss-Gehäuse

Linear Sets, R1065 closed type

Linear Sets, R1066 adjustable type

Structural design


- Precison housing (lamellar graphite cast iron)
- Super Linear Bushing with or without self-alignment
- Internal seals

Shaft	Part nu	mbers	Mass
Ød	with Super Linear Bushing 🗖	with Super Linear Bushing 🗉	
	with internal	with internal	
[mm]	seals	seals	[kg]
12	R1065 612 40	R1065 812 40	0.15
16	R1065 616 40	R1065 816 40	0.24
20	R1065 620 40	R1065 820 40	0.42
25	R1065 625 40	R1065 825 40	0.83
30	R1065 630 40	R1065 830 40	1.22
40	R1065 640 40	R1065 840 40	2.29
50	R1065 650 40	R1065 850 40	3.23

adjustable type

Shaft	Part nu	mbers	Mass
Ød	with Super Linear Bushing 🗖	with Super Linear Bushing 🗉	
	with internal	with internal	
[mm]	seals	seals	[kg]
12	R1066 612 40	R1066 812 40	0.15
16	R1066 616 40	R1066 816 40	0.24
20	R1066 620 40	R1066 820 40	0.41
25	R1066 625 40	R1066 825 40	0.79
30	R1066 630 40	R1066 830 40	1.19
40	R1066 640 40	R1066 840 40	2.26
50	R1066 650 40	R1066 850 40	3.15

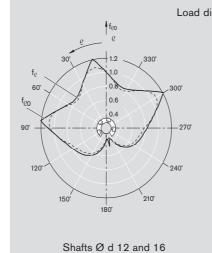
						C	Dimension	s [mm]					
Ød	D	Н	$H_{1}^{(1)}$	L	A ¹⁾	A ₁ ¹⁾	B ¹⁾	B ₁	E ₁	E ₂	S	V ¹⁾	SW
12	22	18	35	32	42	21	32	20	32±0.15	23±0.15	4.5	5.5	2.5
16	26	22	42	36	50	26	35	22	40±0.15	26±0.15	4.5	6.5	3
20	32	25	50	45	60	28	42	28	45±0.15	32±0.15	4.5	8	3
25	40	30	60	58	74	38	54	40	60±0.15	40±0.15	5.5	9	5
30	47	35	70	68	84	41	60	48	68±0.20	45±0.20	6.6	10	5
40	62	45	90	80	108	51	78	56	86±0.20	58±0.20	9	12	6
50	75	50	105	100	130	57	70	72	108±0.20	50±0.20	9	14	8

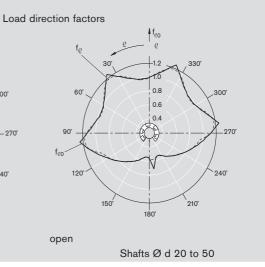
Shaft	Radi	ial clearar	nce [µm]	Tolerance for H ²⁾	Load capa	cities ³⁾ [N]
Ød	R10	65	R1066	[µm]	dyn. C	stat. C ₀
	Sha	aft				
[mm]	h6	h7				
12	+38	+43		+8	1020	490
	+10	+12		-16		
16	+38	+43	ery	+8	1250	620
	+10	+12	eliv	-16		
20	+43	+49	rance r to de down	+8	2470	1340
	+11	+13	ara or t d dd	-16		
25	+43	+49	Adjusted to zero-clearance on h5 shaft (lower limit)prior to delivery when screwed down	+8	4820	2790
	+11	+13	ero- cre	-16		
30	+43	+49	n si li si	+8	5860	3570
	+11	+13	ed to (lower when	-16		
40	+50	+57	th (I	+8	10070	5570
	+12	+14	Adju sha	-16		
50	+50	+57	4.5	+13	14730	8280
	+12	+14		-21		

¹⁾ Tolerance DIN 1686-GTB15.

²⁾ When screwed down, relative to shaft nominal dimension d.

³⁾ The load capacities stated are minimum values as the position and direction of load cannot always be precisely defined. If the load direction is not the main load direction, the load capacties are to be multiplied by the following factors: Shafts-Ø 10 to 16: f = 0.82 $f_0 = 0.86$ Shafts-Ø 20 to 50: f = 0.82 $f_0 = 0.78$

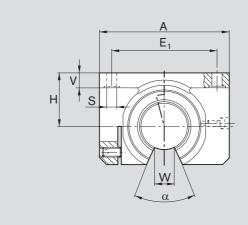

Linear Sets with Super Linear Bushings 💁 or 🗉, cast iron housing

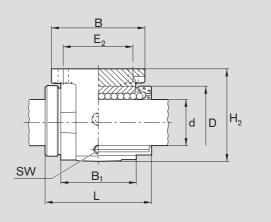

Linear Sets, R1067 open type

Linear Sets, R1068 open type, adjustable

Structural design

- Precision housing (spheroidal graphite cast iron)
- Retention by means of locating screw
- Super Linear Bushing with or without self-alignment
- Internal seals





		Mass
vith Super Linear Bushing 💁	with Super Linear Bushing 🗉	
with internal	with internal	
seals	seals	[kg]
R1067 612 40	R1067 812 40	0.13
R1067 616 40	R1067 816 40	0.20
R1067 620 40	R1067 820 40	0.36
R1067 625 40	R1067 825 40	0.70
R1067 630 40	R1067 830 40	1.05
R1067 640 40	R1067 840 40	2.05
R1067 650 40	R1067 850 40	2.77
	with internal seals R1067 612 40 R1067 616 40 R1067 620 40 R1067 625 40 R1067 630 40 R1067 640 40	with internal seals with internal seals R1067 612 40 R1067 812 40 R1067 616 40 R1067 816 40 R1067 620 40 R1067 820 40 R1067 625 40 R1067 825 40 R1067 630 40 R1067 830 40 R1067 640 40 R1067 840 40

Shaft	Part nu	mbers	Mass
Ød	with Super Linear Bushing 🗖	with Super Linear Bushing 🗉	
	with internal	with internal	
[mm]	seals	seals	[kg]
12	R1068 612 40	R1068 812 40	0.12
16	R1068 616 40	R1068 816 40	0.20
20	R1068 620 40	R1068 820 40	0.36
25	R1068 625 40	R1068 825 40	0.69
30	R1068 630 40	R1068 830 40	1.02
40	R1068 640 40	R1068 840 40	2.02
50	R1068 650 40	R1068 850 40	2.71

						0	Dimensior	ıs [mm]					
Ød	D	Н	$H_{2}^{2)}$	L	A ²⁾	B ²⁾	B ₁	E ₁	E ₂	S	V ²⁾	W ³⁾	SW
12 ¹⁾	22	18	28	32	42	32	20	32±0.15	23±0.15	4.5	5.5	6.5	2.5
16 ¹⁾	26	22	35	36	50	35	22	40±0.15	26±0.15	4.5	6.5	9	2.5
20 ¹⁾	32	25	42	45	60	42	28	45±0.15	32±0.15	4.5	8	9	2.5
25 ¹⁾	40	30	51	58	74	54	40	60±0.15	40±0.15	5.5	9	11.5	3
30	47	35	60	68	84	60	48	68±0.20	45±0.20	6.6	10	14	3
40	62	45	77	80	108	78	56	86±0.20	58±0.20	9	12	19.5	4
50	75	50	88	100	130	70	72	108±0.20	50±0.20	9	14	22.5	5

Shaft	Angle	Radial clearance [µm]			Tolerance for H ⁴⁾	Load capacities ⁵⁾ [N]	
Ød	α	R10 Sh		R1068	[µm]	dyn. C	stat. C ₀
[mm]	[°]	h6	h7				
12	66	+28	+33		+8	1060	510
		-1	+1		-16		
16	68	+28	+33	i h5 /ery	+8	1280	630
		-1	+1	e or deliv	-16		
20	55	+31	+37	clearance on h5 prior to delivery ved down	+8	2100	1070
		-2	0	ara or d	-16		
25	57	+31	+37	zero-clearance limit) prior to de screwed down	+8	4130	2250
		-2	0	ero- cre	-16		
30	57	+31	+37	n Ei S	+8	5020	2880
		-2	0	Adjusted to z shaft (lower l when s	-16		
40	56	+35	+42	tr (l	+8	8620	4480
		-3	-1	Adju	-16		
50	54	+35	+42	1.0	+13	12500	6620
		-3	-1		-21		

- ¹⁾ In these sizes, the locating screw is on the opposte side to that shown in the illustration.
- ²⁾ Tolerance DIN 1685-GTB15.
- ³⁾ Minimum dimension based on shaft diameter d.
- ⁴⁾ When screwed down, relative to shaft nominal dimension d.
- ⁵⁾ The given load capacities are valid for the main load capacity direction $\rho = 0^{\circ}$.

Linear Sets with Super Linear Bushings or , cast iron housing

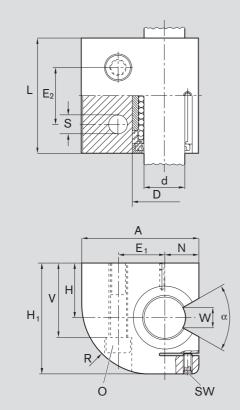
Linear Sets, R1073 with side opening

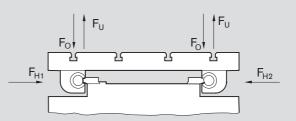
Linear Sets, R1074 with side opening, adjustable

Structural design

- Precision housing (spheroidal graphite cast iron)
- Retention by means of locating screw
- Super Linear Bushing with or without self-alignment
- Internal seals


The load carrying capacity of open linear bushings is considerably reduced when the load is applied to the "open" portion of the bushing. The Linear Set with side opening has been developed to overcome this disadvantage and to permit selective circumferential positioning of the open linear bushing.


Load direction factors 270° 300° 240° 1,00 330° 210° 0,80 0,60 0.40 feo fe _180° 0 150° /60° 120° fo 9⁰° f_{ϱ_0} open Shafts Ø d 20 to 50


Shaft	Part nu	Mass	
Ød	with Super Linear Bushing 🗖	with Super Linear Bushing 🗉	
	with two	with two	
[mm]	seals	seals	[kg]
20	R1073 620 00	R1073 820 00	1.0
25	R1073 625 00	R1073 825 00	1.9
30	R1073 630 00	R1073 830 00	2.8
40	R1073 640 00	R1073 840 00	4.8
50	R1073 650 00	R1073 850 00	8.0

with side opening, adjustable

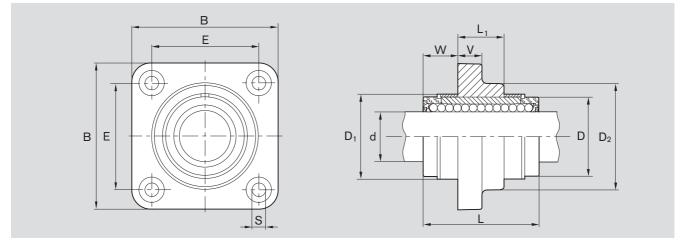
Shaft	Part nu	Mass	
Ød	with Super Linear Bushing 🗖	with Super Linear Bushing 🗉	
	with two	with two	
[mm]	seals	seals	[kg]
20	R1074 620 00	R1074 820 00	1.0
25	R1074 625 00	R1074 825 00	1.9
30	R1074 630 00	R1074 830 00	2.8
40	R1074 640 00	R1074 840 00	4.8
50	R1074 650 00	R1074 850 00	8.0

						Dimensior	ns [mm]							
Ød	Н	H ₁ ²⁾	L ²⁾	A ²⁾	E ₁	E ₂	Ν	D	V	S	SW	O ³⁾	R ²⁾	W ⁴⁾
20 ¹⁾	30	60	60	60	22±0.25	30±0.25	17	32	42	9	2.5	M8x60	37	9
25 ¹⁾	35	72	73	75	28±0.25	36±0.25	21	40	50	11	3	M10x70	45	11.5
30	40	82	85	86	34±0.5	42±0.5	25	47	55	13.5	3	M12x80	51	14
40	45	100	97	110	43±0.5	48±0.5	32	62	67	15.5	4	M14x90	66	19.5
50	50	115	125	127	50±0.5	62±0.5	38	75	78	17.5	5	M16x110	77	22.5

Shaft	Angle	Radia	al cleara	nce ⁵⁾ [µm]	Tolerance for H ⁶⁾	Load capa	cities ⁷⁾ [N]
Ød	α	R10	073	R1074	[µm]	dyn. C	stat. C ₀
		Sh	aft				
[mm]	[°]	h6	h7				
201)	55	+31	+37	5 . 5	+8	2100	1070
		-2	0	ce on or to down	-16		
25 ¹⁾	57	+31	+37	C'7	+8	4130	2250
		-2	0	-clear limit) crewe	-16		
30	57	+31	+37	o-clearar r limit) pr screwed	+8	5020	2880
		-2	0	to zero (lower when so	-16		
40	56	+35	+42	Å ^l 6b	+8	7680	4480
		-3	-1	usted shaft ivery v	-16		
50	54	+35	+42	djuste 15 sha elivery	+13	12500	6620
		-3	-1	Ad h! de	-21		

- ¹⁾ In these sizes, the locating screw is on the opposite side to that shown in the illustration.
- ²⁾ Tolerance DIN 1685-GTB 16.
- ³⁾ Hex. socket head cap screws to ISO 4762-8.8.
- ⁴⁾ Minimum dimension based on shaft diameter d.
- $^{\scriptscriptstyle 5)}$ When screwed down.
- ⁶⁾ Relative to shaft nominal dimension d.
- $^{7)}$ The load capacities apply when the load is acting in the direction shown by the arrows at $F_{\rm H1}$ or $F_{\rm H2}$

Linear-Sets with Super Linear Bushings
or
, cast iron housing


Linear Sets, R1081 Flanged type

Structural design

- Precision housing (lamellar graphite cast iron)
- Two retaining rings plus two spacer rings (steel) for sizes 12 to 40
- Super Linear Bushing with or without self-alignment feature
- Internal seals
- The radial clearance is not adjustable

Shaft	Part nu	mbers	Mass
Ød	with Super Linear Bushing 🗖	with Super Linear Bushing 🗉	
	with two	with two	
[mm]	seals	seals	[kg]
12	R1081 612 40	R1081 812 40	0.095
16	R1081 616 40	R1081 816 40	0.16
20	R1081 620 40	R1081 820 40	0.30
25	R1081 625 40	R1081 825 40	0.57
30	R1081 630 40	R1081 830 40	0.85
40	R1081 640 40	R1081 840 40	1.65
50	R1081 650 40	R1081 850 40	3.40

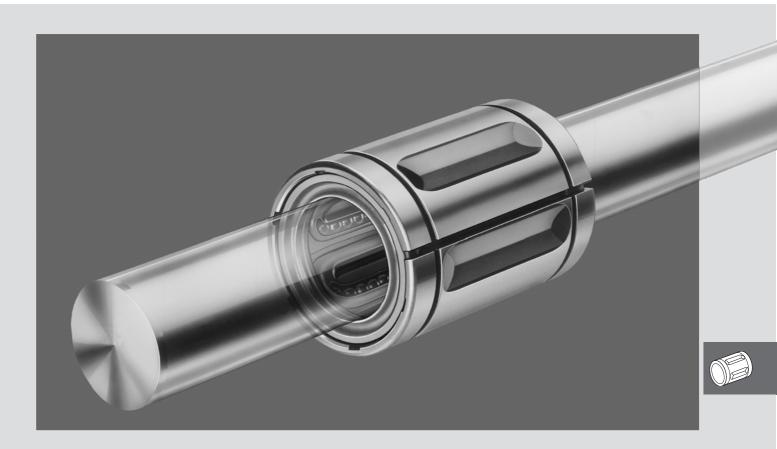
					Dimension	s [mm]					
Ød	B ¹⁾	L	L ₁	D	D ₁	D ₂ ¹⁾	E	S	V ¹⁾	W	6
					+0,8			H13			
12	42	32	12	22	24	28	30±0.12	5.5	6	10	
16	50	36	15	26	28,5	34	35±0.12	5.5	8	10.5	
20	60	45	18	32	35	42	42±0.15	6.6	10	13.5	
25	74	58	23	40	43	54	54±0.15	6.6	12	17.5	
30	84	68	26	47	49,5	62	60±0.25	9.0	14	21	_
40	108	80	36	62	66,5	80	78±0.25	11	16	22	
50	130	100	72	75	81	98	98±0.25	11	18	14	

Shaft	Radial clearance	e [µm]	Load capa	acities [N]
Ød	Shaft		dyn. C	stat. C ₀
[mm]	h6	h7		
12	+38	+43	830	420
	+10	+12		
16	+38	+43	1020	530
	+10	+12		
20	+43	+49	2020	1050
	+11	+13		
25	+43	+49	3950	2180
	+11	+13		
30	+43	+49	4800	2790
	+11	+13		
40	+50	+57	8240	4350
	+12	+14		
50	+50	+57	12060	6470
	+12	+14		

¹⁾ Tolerance DIN 1686-GTB15.

The Advantages

- Robust steel enclosure suitable for environments with high contamination
- For use in woodworking, foundries, cement works
- Also in corrosion-resistant for the medical, chemical and food industries
- Several cavaties serve as lubricant reservoirs for extended lubrication intervals or duty-cycle lubrication
- These cavaties can also capture invading dirt, preventing potential blockage of the Linear Bushing
- Available without seals and steel enclosures for applications requiring very high temperatures i.e. vacuums
- Various flange styles
- With or without internal seals
- Linear Sets with cast iron housing



adjustable type

closed type

closed type

flanged type

middle flanged type

tandem

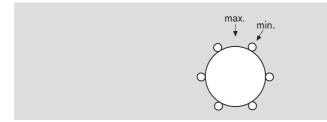
Technical Data

Please observe the general technical principles and mounting instructions at the beginning of this catalog as well as the additional technical data given below.

Outer dimensions/interchangeability	intercha		r Linear Bushings (d	r dimensions and ar caution: different ret	
Sealing	Bushing	-	can also be supplie	eals. Open type Star ed fully sealed (with	
Low friction	to run si breakaw The frict between The frict value w The frict	hort, there would be vay forces. tion μ of unsealed S n 0.001 and 0.004. tion is lowest under hen only a slight loa tional drag in linear depends on the sp	e no appreciable ind Standard Linear Bus high load. It may, h id is applied. bushings sealed a	ciple. Even if the lub crease in friction. Ex shings using oil as a nowever, be greater at both ends and no of lubrication and is	tremely low lubricant lies than the stated t subject to radial
	Shaft	closed and	adiustable	ope	en
	Ød	Breakaway force	Frictional drag	Breakaway force	Frictional drag
	[mm]	[N] approx.	[N] approx.	[N] approx.	[N] approx.
	5	0.8	0.4	-	-
	8	1	0.5	-	_
	10	2	1	_	_
	12	6	2	8	3
	16	9	3	12	4

-	60	36	12	48	16
	80	45	15	60	20
				V _{max}	a _{max} [m/o ²]
				[m/o]	[m/o2]

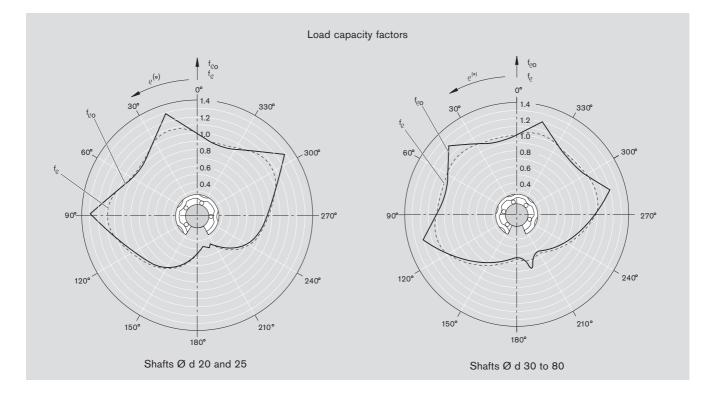
Velocity and acceleration


	[•] max [m/s]	[m/s ²]
Standard Linear Bushing d \leq 40 mm	2.5	100
Standard Linear Bushing d \ge 50 mm	2	50

Operating temperatures

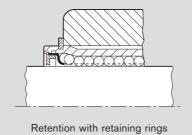
Linear bushings without seals: up to 100 °C. Higher temperatures are permissible for sizes 12 to 80 though at the cost of reduced load capacity (see temperature factor f_t in "General Technical Data and Mounting Instructions"). Linear bushings with seals: up to 80 °C (brief peaks up to 100 °C).

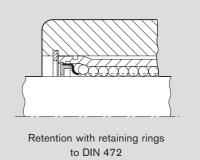
Direction of load and its influence on the load-carrying capacity of closed and adjustable Standard Linear Bushings The load capacities given are valid for installation in "min" position and should be taken as the basis for calculation.


In applications where the direction of load is exactly known and where the Standard Linear Bushings can be mounted in the "max" position, the load capacity rating must be multiplied by the factors f_{max} (dynamic load capacity C) or $f_{0 max}$ (static load capacity C_0) from the table.

Direction of load and its influence on the load-carrying capacity of open Standard Linear Bushings

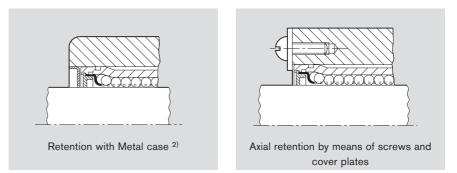
The load capacities C and C₀ apply when the load is acting along the line $Q = 0^{\circ}$. If the load is acting in any other direction, these load capacities must be multiplied by the factors f_Q (dynamic load capacity C) or f_{Q0} (static load capacity C₀). A reduction in the load capacity can be avoided by selective circumferential positioning of the Standard Linear Bushing (see Linear Sets with side opening).




Custom-built Housings

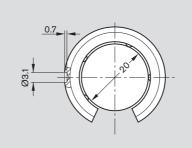
Retention Standard Linear Bushings closed adjustable

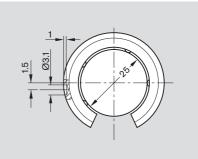
- Retaining rings
- Metal case
- Special design

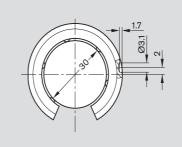


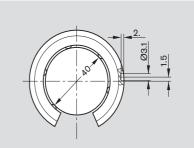
to DIN 471

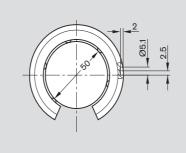
Shaft	Retaining rin	gs DIN 471	Retaining rings DIN 472						
Ød	Part numbers	Dimensions	Part numbers	Dimensions					
[mm]		[mm]		[mm]					
5	R3410 712 00	12 x 1	R3410 207 00	12 x 1					
8	R3410 713 00	16 x 1	R3410 208 00	16 x 1					
10	R3410 763 00	19 x 1.2	R3410 221 00	19 x 1					
12	R3410 714 00	22 x 1.2	R3410 209 00	22 x 1					
16	R3410 715 00	27 x 1.2 ¹⁾	R3410 210 00	26 x 1.2					
20	R3410 716 00	33 x 1.5 ¹⁾	R3410 211 00	32 x 1.2					
25	R3410 717 00	42 x 1.75	R3410 212 00	40 x 1.75					
30	R3410 718 00	48 x 1.75	R3410 213 00	47 x 1.75					
40	R3410 719 00	62 x 2	R3410 214 00	62 x 2					
50	R3410 720 00	75 x 2.5	R3410 215 00	75 x 2.5					
60	R3410 721 00	90 x 3	R3410 216 00	90 x 3					
80	R3410 722 00	120 x 4	R3410 217 00	120 x 4					

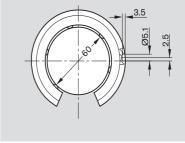

¹⁾ Not to DIN 471.

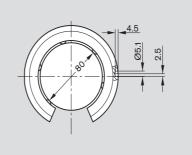


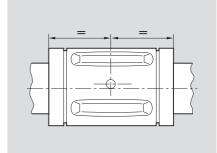

²⁾ For part numbers and dimensions, see Super Linear Bushings
and
. Custom-built housings.

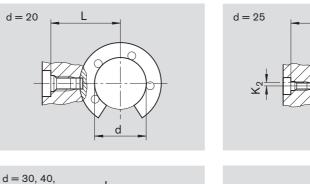

Standard Linear Bushings open type • Dimensions of retention hole

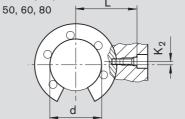

The open type Standard Linear Bushing has been provided with a tetention hole, thus allowing axial and radial securing.

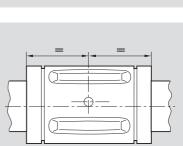


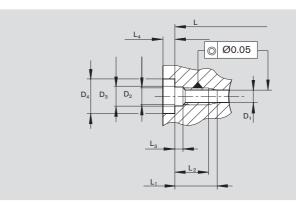




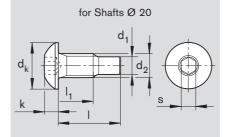


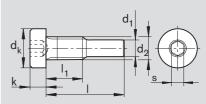



Custom-built Housings


· Retention with a locating screw

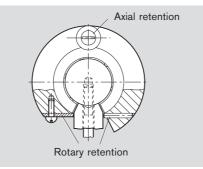
Points to note when mounting Open type standard Linear Bushing have been provided with the necessary retention hole. On installation, the retention hole in the Linear Bushing must be aligned with the tapped hole in the housing. The screw is then inserted, screwed down to the specified depth and tightened to the specified torque.





Locating screw

The locating screws are self-adjusting.



for Shafts Ø 25, 30, 40, 50, 60, 80

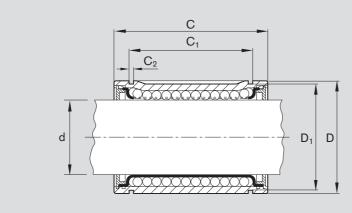
Shaft						[Dimen	nsions	s [mm]									Locating	screw
[mm]																		Part numbers	Tightening
Ød	L	K_2	L ₁	L_2	L_3	L_4	D ₁	D_2	D_3	D_4	d_2	d_k	d_1	I	I_1	k	S		torque
				min.	+0.2	min	+0.1		H13	H13									[Nm]
20	25.5 _{-0.1}	0	8.5+0.2	6.5	1.3	2.5	3.1	M4	4.5	8	M4	7.6	3	10.15	5.7	2.2	2.5	R3429 009 01	1.9
25	33.05 _{-0.1}	1.5	10 ^{+0.2}	8	2	3.2	3.1	M4	4.5	8	M4	7	3	14.1	6.5	2.8	2.5	R3427 009 09	1.9
30	36 _{-0.15}	2	10+0.2	8	2	3.2	3.1	M4	4.5	8	M4	7	3	14.1	6.5	2.8	2.5	R3427 009 09	1.9
40	42.9 _{-0.15}	1.5	10+0.2	8	2	3.2	3.1	M4	4.5	8	M4	7	3	14.1	6.5	2.8	2.5	R3427 009 09	1.9
50	58.5 _{-0.2}	2.5	17.5 ^{+0.5}	13.5	3.7	6	5.1	M8	9	15	M8	13	5	22.8	12.5	5	5	R3427 005 09	16
60	71.5 _{-0.25}		17.5 ^{+0.5}	13.5	3.7	6	5.1	M8	9	15	M8	13	5	29.7	12.5	5	5	R3427 006 09	16
80	85.5 _{-0.25}	2.5	17.5+0.5	13.5	3.7	6	5.1	M8	9	15	M8	13	5	29.7	12.5	5	5	R3427 006 09	16

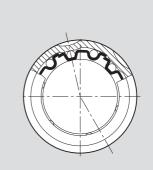
• Axial retention by means of screws and cover plates, rotary retention by means of pin or plates.

Standard Linear Bushings, R0600 closed type, without seal

Standard Linear Bushings, R0602 closed type, with seals

Structural design


- · Hardened and ground outer sleeve
- Steel ball retainer (plastic ball retainer in sizes 5 and 8)
- Balls made of anti-friction bearing steel
- Internal steel holding rings or seals
- Closed version, for use on unsupported shafts



Shaft	Part nu	mbers	Mass
Ød	without seal	with two seals	
[mm]			[kg]
3	R0600 303 00	-	0.001
4	R0600 304 00	-	0.002
5	R0600 305 00	R0602 305 10	0.010
8	R0600 308 00	R0602 308 10	0.020
10	R0600 310 00	R0602 310 10	0.030
12	R0600 012 00	R0602 012 10	0.040
16	R0600 016 00	R0602 016 10	0.050
20	R0600 020 00	R0602 020 10	0.100
25	R0600 025 00	R0602 025 10	0.190
30	R0600 030 00	R0602 030 10	0.320
40	R0600 040 00	R0602 040 10	0.620
50	R0600 050 00	R0602 050 10	1.140
60	R0600 060 00	R0602 060 10	2.110
80	R0600 080 00	R0602 080 10	4.700

With one seal: R0601 ... 10.

01...0

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	t. C ₀ max 65 85 200 330
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	65 85 200 330
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	85 200 330
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	85 200 330
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	200
0 +2 +3 5 ²⁾ 12 22 14.2 1.1 11.1 4 +11 +16 +20 180 210 140	200
5 ²⁾ 12 22 14.2 1.1 11.1 4 +11 +16 +20 180 210 140	330
	330
+1 +4 +4	
8 ²⁾ 16 25 16.2 1.1 14.7 4 +12 +18 +24 320 370 240	
+2 +5 +5	070
10 ²⁾ 19 29 21.6 1.3 18 4 +8 +18 +24 300 350 260	370
0 +5 +5	
12 22 32 22.6 1.3 20.5 4 +12 +20 +26 420 480 280	400
+2 +5 +6	
16 26 36 24.6 1.3 24.9 4 +14 +22 +28 580 670 440	620
+2 +5 +6	
20 32 45 31.2 1.6 30.5 5 +14 +23 +31 1170 1390 860	1250
+2 +6 +6	
25 40 58 43.7 1.85 38.5 5 +16 +25 +32 2080 2480 1560	2280
+2 +6 +7	
30 47 68 51.7 1.85 44.5 6 +16 +25 +32 2820 2980 2230	2860
+2 +6 +7	
40 62 80 60.3 2.15 58 6 +19 +30 +38 5170 5480 3810	4880
+2 +7 +8	
50 75 100 77.3 2.65 71 6 +19 +30 +38 8260 8740 6470	8280
+2 +7 +8	
60 90 125 101.3 3.15 85 6 +19 +33 +43 11500 12100 9160	11730
+2 +7 +8	
80 120 165 133.3 4.15 114 6 +24 +37 +47 21000 22200 16300	20850
+2 +8 +9	

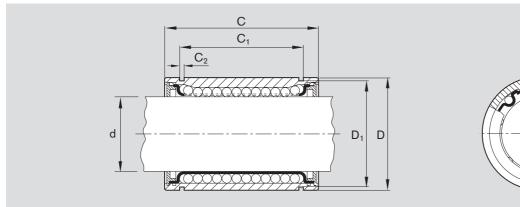
¹⁾ Statistically determined from the working bore diameter and shaft tolerance. Recommended housing bore tolerance: H6 or H7.

 $^{\scriptscriptstyle 2)}$ Sizes 3, 4, 5, 8 and 10 have a plastic ball retainer.

³⁾ Tolerance h6

Standard Linear Bushings, R0600 closed type, without seal corrosion-resistant

Standard Linear Bushings, R0602 closed type, with seals corrosion-resistant


Structural design

- Hardened and ground outer sleeve made of corrosion-resistant steel
- Steel ball retainer (plastic ball retainer in sizes 5 and 8)
- Balls made of anti-friction bearing steel
- · Internal steel holding rings or seals
- Closed version, for use on unsupported shafts

Shaft	Part nu	mbers	Mass
Ød	without seal	with two seals	
[mm]			[kg]
3	R0600 003 30	-	0.001
4	R0600 004 30	-	0.002
5	R0600 005 30	R0602 005 30	0.011
8	R0600 008 30	R0602 008 30	0.022
10	R0600 010 30	R0602 010 30	0.036
12	R0600 012 30	R0602 012 30	0.045
16	R0600 016 30	R0602 016 30	0.060
20	R0600 020 30	R0602 020 30	0.100
25	R0600 025 30	R0602 025 30	0.235
30	R0600 030 30	R0602 030 30	0.360
40	R0600 040 30	R0602 040 30	0.770

Note Corrosion-resistant steel is steel to ISO 683-17 / EN 10088.

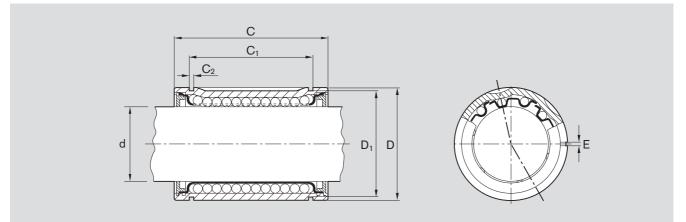
		Dimen	sions [mm]			No. of ball	ball Bore Radial			Load capacities [N]			
						circuits	diameter	cleara	Ince ¹⁾	dyn.	С	stat. C ₀	
Øc	I D	С	C ₁	C ₂	D ₁		tolerance	[µı	n]	min	max	min	max
	h5	h12	H13				[µm]	h6	h7				
3	7 ²⁾	10	-	-	-	4	+8	+12	+15	55	65	45	65
							0	+2	+3				
4	8 ²⁾	12	-	-	-	4	+8	+14	+17	70	80	60	85
							0	+2	+3				
5	i 12	22	14.2	1.1	11.5	4	+11	+16	+20	160	185	180	250
							+1	+4	+4				
8	8 16	25	16.2	1.1	15.2	4	+12	+18	+24	210	240	235	330
							+2	+5	+5				
10) 19	29	21.6	1.3	18	4	+8	+18	+24	300	350	260	370
							0	+5	+5				
12	2 22	32	22.6	1.3	21	4	+12	+20	+26	400	460	420	600
							+2	+5	+6				
16	6 26	36	24.6	1.3	24.9	4	+14	+22	+28	460	530	440	630
							+2	+5	+6				
20) 32	45	31.2	1.6	30.3	5	+14	+23	+31	680	800	860	1250
							+2	+6	+6				
25	i 40	58	43.7	1.85	37.5	6	+16	+25	+32	780	830	1620	2100
							+2	+6	+7				
30) 47	68	51.7	1.85	44.5	6	+16	+25	+32	1250	1320	2000	2500
							+2	+6	+7				
40	62	80	60.3	2.15	59	6	+19	+30	+38	1720	1820	3300	4200
							+2	+7	+8				

¹⁾ Statistically determined from the working bore diameter and shaft tolerance. Recommended housing bore tolerance: H6 or H7. ²⁾ Tolerance h6

Standard Linear Bushings, R0610 adjustable type, without seal

Standard Linear Bushings, R0612 adjustable type, with seals

Structural design


- · Hardened and ground outer sleeve
- Steel ball retainer (plastic ball retainer in sizes 5 and 8)
- Balls made of anti-friction bearing steel
- Internal steel holding rings or seals
- Radial clearance adjustable

Shaft	Part nu	mbers	Mass
Ød	without seal	with two seals	
[mm]			[kg]
5	R0610 305 00	R0612 305 10	0.01
8	R0610 308 00	R0612 308 10	0.02
12	R0610 012 00	R0612 012 10	0.04
16	R0610 016 00	R0612 016 10	0.05
20	R0610 020 00	R0612 020 10	0.10
25	R0610 025 00	R0612 025 10	0.19
30	R0610 030 00	R0612 030 10	0.32
40	R0610 040 00	R0612 040 10	0.62
50	R0610 050 00	R0612 050 10	1.14
60	R0610 060 00	R0612 060 10	2.11
80	R0610 080 00	R0612 080 10	4.70

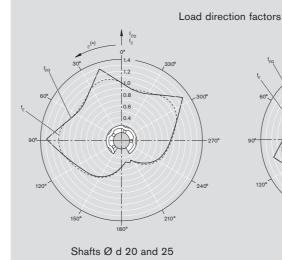
With one seal: R0611 ... 10.

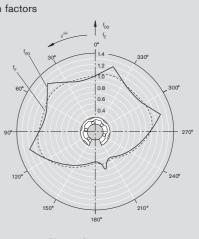
01...(1

	Dimensions [mm]						No. of ball Load capacities [N]					Radial clearance adjustable						
							circuits	dyı	n. C	st	at. C _o	[shaft/bore]						
Ød	D ²⁾	С	C ₁	C_2	D ₁	Е		min	max	min	max			[µn	n]			
	h5	h12	H13									h6/H6	h6/HS6	h6/K6	h7/H7	h7/JS7	h7/K7	
5 ¹⁾	12	22	14.2	1.1	11.1	1.5	4	180	210	140	200	+28	+23	+19	+37	+28	+25	
												+10	+4	+1	+12	+3	0	
8 ¹⁾	16	25	16.2	1.1	14.7	1.5	4	320	370	240	330	+31	+25	+22	+41	+32	+29	
												+11	+6	+2	+14	+5	+2	
12	22	32	22.6	1.3	20.5	1.5	4	420	480	280	400	+34	+28	+23	+46	+36	+31	
												+13	+6	+2	+16	+5	+1	
16	26	36	24.6	1.3	24.9	1.5	4	580	670	440	620	+36	+29	+25	+48	+37	+33	
		45	01.0	1.0	005	0.0		4480	1000		1050	+13	+7	+2	+16	+6	+1	
20	32	45	31.2	1.6	30.5	2.0	5	1170	1390	860	1250	+41	+33	+28	+55	+42	+37	
25	40	58	40.7	1.85	38.5	2.0	5	2080	2480	1560	2280	+15	+7 +35	+2	+18	+6	0+38	
20	40	50	43.7	1.00	30.0	2.0	5	2080	2400	1560	2200	+43	+35	+30	+56	+44		
30	47	68	517	1.85	44.5	2.0	6	2820	2980	2230	2860	+13	+35	+30	+19	+0	+1 +38	
30	47	00	51.7	1.00	44.0	2.0	0	2020	2900	2230	2000	+15	+35	+30	+19	+6	+30	
40	62	80	60.3	2.15	58	2.0	6	5170	5480	3810	4880	+51	+41	+36	+67	+52	+46	
40	02	00	00.0	2.10	00	2.0	0	0170	0400	0010	4000	+18	+9	+3	+22	+7	+1	
50	75	100	77.3	2.65	71	2.0	6	8260	8740	6470	8280	+51	+41	+36	+67	+52	+46	
				2.00		2.0	Ū	0200	01.0		0200	+18	+9	+3	+22	+7	+1	
60	90	125	101.3	3.15	85	2.0	6	11500	12100	9160	11730	+57	+46	+39	+76	+59	+51	
												+20	+9	+2	+25	+7	0	
80	120	165	133.3	4.15	114	2.0	6	21000	22200	16300	20850	+61	+50	+43	+80	+62	+55	
												+21	+10	+3	+26	+9	+1	

 $^{\scriptscriptstyle 1)}\,Sizes$ 5 and 8 have a plastic ball retainer.

 $^{\mbox{\tiny 2)}}$ Tolerances valid for this diameter before the bushing housing is slotted.

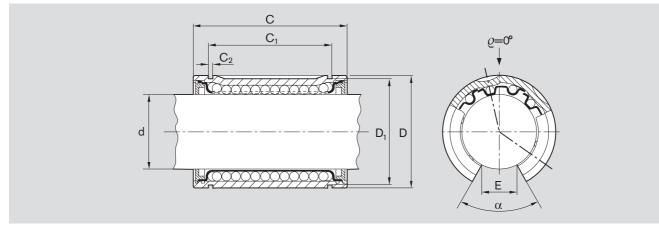



Standard Linear Bushings, R0630 open type, without seal

Standard Linear Bushings, R0632 open type, with seals

Structural design

- Hardened and ground outer sleeve
- Steel ball retainer (plastic ball retainer in sizes 5 and 8)
- Balls made of anti-friction bearing steel
- Internal steel holding rings or seals
- With bore for axial and radial retention (except sizes 12 and 16)


Shafts Ø d 30 to 80

Shaft			Mass	
Ød	without seal	with two	fully sealed	
[mm]		seals		[kg]
12 ¹⁾	R0630 012 00	R0632 012 00	-	0.03
16 ¹⁾	R0630 016 00	R0632 016 00	_	0.04
20	R0630 020 00	R0632 020 00	R0632 020 05	0.08
25	R0630 025 00	R0632 025 00	R0632 025 05	0.15
30	R0630 030 00	R0632 030 00	R0632 030 05	0.26
40	R0630 040 00	R0632 040 00	R0632 040 05	0.52
50	R0630 050 00	R0632 050 00	R0632 050 05	0.95
60	R0630 060 00	R0632 060 00	R0632 060 05	1.76
80	R0630 080 00	R0632 080 00	R0632 080 05	3.92

¹⁾ Without bore for axial and radial retention.

With one seal: R0631 0.. 00

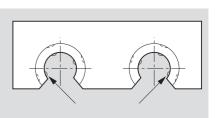
			Din	nensions	s [mm]			Angle	No. of	Load ca	cacities ³⁾	Radial clearance adjustable [µm]					
								[°]	ball	dyn. C [l	V]stat. C ₀			(Shaft/	Bore)		
Ø	d D	D ¹⁾	С	C ₁	C_2	D ₁	E ²⁾	α	circuits								
	I	h5	h12	H13								h6/H6	h6/HS6	h6/K6	h7/H7	h7/JS7	h7/K7
1	2 2	22	32	22.6	1.3	20.5	7.5	78	3	430	290	+34	+28	+23	+46	+36	+31
												+13	+6	+2	+16	+5	+1
1	6 2	26	36	24.6	1.3	24.9	10.0	78	3	600	450	+36	+29	+25	+48	+37	+33
												+13	+7	+2	+16	+6	+1
2	0 3	32	45	31.2	1.6	30.5	10.0	60	4	1280	970	+41	+33	+28	+55	+42	+37
												+15	+7	+2	+18	+6	0
2	5 4	40	58	43.7	1.85	38.5	12.5	60	4	2270	1750	+43	+35	+30	+56	+44	+38
												+15	+7	+2	+19	+6	+1
3	0 4	47	68	51.7	1.85	44.5	12.5	50	5	2890	2390	+43	+35	+30	+56	+44	+38
												+15	+7	+2	+19	+6	+1
4	06	62	80	60.3	2.15	58	16.8	50	5	5280	4000	+51	+41	+36	+67	+52	+46
												+18	+9	+3	+22	+7	+1
5	0 7	75	100	77.3	2.65	71	21.0	50	5	8470	6900	+51	+41	+36	+67	+52	+46
												+18	+9	+3	+22	+7	+1
6	0 9	90	125	101.3	3.15	85	27.2	54	5	11800	9780	+57	+46	+39	+76	+59	+51
												+20	+9	+2	+25	+7	0
8	0 12	20	165	133.3	4.15	114	36.3	54	5	21500	17400	+61	+50	+43	+80	+62	+55
												+21	+10	+3	+26	+9	+1

¹⁾ The tolerance stated is valid for the Linear Bushing in the unslotted condition.

 $^{\scriptscriptstyle 2)}\,\textsc{Minimum}$ dimension based on shaft diameter d.

For loads

 $^{\scriptscriptstyle 3)}$ The load capacities C and C_{\scriptscriptstyle 0} apply only when the load is acting along the line ρ = 0° .


If the load is acting in any other direction, these load capacities must be multiplied by the factor $\frac{b}{b}$ or $f_{p,0}$

acting on the opening in sizes 12 and 16:
$$\varrho = 180^{\circ}$$

$$f_{\varrho} = 0.37$$

The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the "C" figures in the table must be multiplied by a factor of 1.26.

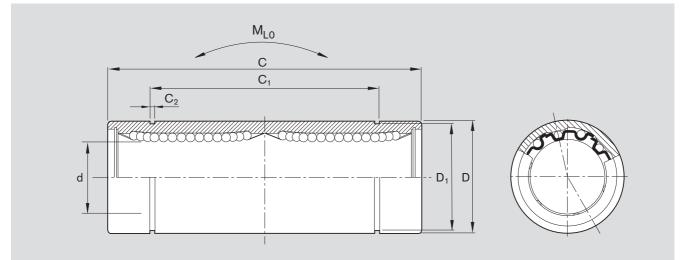
Sizes 12 and 16 must be mounted as shown here (mirror-symmetrically) to prevent their lifting from the shaft. It is not possible to adjust a single linear bushing (with slotted housing adjustable by means of an adjusting screw) to zero clearance.

Standard Linear Bushings, R0650 Tandem, with seals normal

Structural design

- · Hardened and ground outer sleeve
- Plastic ball retainer
- Balls made of anti-friction bearing steel
- Internal seals

Standard Linear Bushings, R0650 Tandem, with seals corrosion-resistant


Structural design

- Hardened and ground outer sleeve made of corrosion-resistant steel
- Ball retainer made of corrosionresistant steel
- Balls made of corrosion-resistant anti-friction bearing steel
- Internal Seals

Shaft	Part nu	mbers	Mass
Ød	normal	corrosion-resistant	
[mm]			[kg]
8	R0650 508 00	R0650 208 30	0.04
12	R0650 512 00	R0650 212 30	0.08
16	R0650 516 00	R0650 216 30	0.12
20	R0650 520 00	R0650 220 30	0.18
25	R0650 525 00	R0650 225 30	0.43
30	R0650 530 00	R0650 230 30	0.62
40	R0650 540 00	R0650 240 30	1.40

Note: Corrosion-resistant steel is steel to ISO 683-17 / EN 10088.

			Dimen	sions [mm]			No. of ball	Bore	Rad	dial	Load capacities [N]				Tipping
							circuits	diameter	cleara	ance ¹⁾	dyn	. C	stat	. C ₀	Moment M _{L0}
Q	ðd	D	С	C ₁	C_2	D ₁		tolerance	[µı	m]	min	max	min	max	stat.
		h6						[µm]	h6	h7					[Nm]
	8	16	46 _{-0.3}	33 _{-0.3}	1.10	15.2	4	+9	+15	+21	340	390	470	660	4.5
								-1	+2	+2					
	12	22	61 _{-0.3}	45.8 _{-0.3}	1.30	21.0	4	+9	+17	+23	650	750	840	1200	11
								-1	+2	+3					
	16	26	68 _{-0.3}	49.8 _{-0.3}	1.30	24.9	4	+11	+19	+25	750	860	880	1260	13
								-1	+2	+3					
	20	32	80 _{-0.3}	61 _{-0.3}	1.60	30.5	5	+11	+20	+28	1100	1300	1720	2500	26
								-1	+3	+3					
	25	40	112 _{-0.4}	82 _{-0.4}	1.85	38.0	6	+13	+22	+29	1250	1350	3240	4200	61
								-2	+2	+3					
	30	47	123 _{-0.4}	104.2 _{-0.4}	1.85	44.5	6	+13	+22	+29	2000	2150	4000	5000	82
								-2	+2	+3					
	40	62	151 _{-0.4}	121.2 _{-0.4}	2.15	59.0	6	+16	+27	+35	2800	3000	6600	8400	165
								-4	+1	+2					

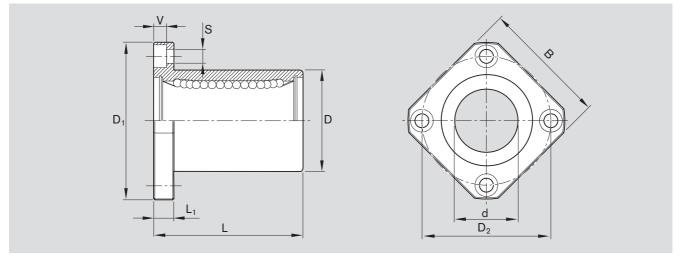
¹⁾ Statistically determined from the working bore diameter and shaft tolerance. Recommended housing bore tolerance: H6 or H7.

Standard Linear Bushings, R0740 Flanged type normal

Structural design

- · Hardened and ground outer sleeve
- Plastic ball retainer
- Balls made of anti-friction bearing steel
- Internal seals

Standard Linear Bushings, R0740 Flanged type corrosion-resistant


Structural design

- Hardened and ground outer sleeve made of corrosion-resistant steel
- Ball retainer made of corrosionresistant steel (Size 5 with plastic ball retainer)
- Balls made of corrosion-resistant anti-friction bearing steel
- Internal Seals

Shaft	Part nu	mbers	Mass
Ød	normal	corrosion-resistant	
[mm]			[kg]
5	R0740 505 00	R0740 505 30	0.020
8	R0740 508 00	R0740 208 30	0.033
12	R0740 512 00	R0740 212 30	0.064
16	R0740 516 00	R0740 216 30	0.090
20	R0740 520 00	R0740 220 30	0.150
25	R0740 525 00	R0740 225 30	0.300
30	R0740 530 00	R0740 230 30	0.470
40	R0740 540 00	R0740 240 30	0.980

Note: Corrosion-resistant steel is steel to ISO 683-17 / EN 10088.

Ød D 5 12 _{-0.013}	1	D_2	В	L	L,	V		circuits	diameter	cleara	nce ¹⁾	dyn.	С	stat.	C.
	1		В	L	L	1/						j · · ·	-	stat. C ₀	
5 12 _{-0.013}	28					v	S		tolerance	[µı	n]	min	max	min	max
5 12 _{-0.013}	28			±0.3					[µm]	h6	h7				
		20	22	22	5	3.1	3.5	4	+8	+14	+17	160	185	180	250
									+0	+2	+3				
8 16 _{-0.013}	32	24	25	25	5	3.1	3.5	4	+8	+15	+20	210	240	235	330
									+0	+2	+3				
12 22 _{-0.016}	42	32	32	32	6	4.1	4.5	4	+8	+16	+23	400	460	420	600
									+0	+3	+3				
16 26 _{-0.016}	46	36	35	36	6	4.1	4.5	4	+9	+17	+23	460	530	440	630
									-1	+2	+3				
20 32 _{-0.019}	54	43	42	45	8	5.1	5.5	5	+9	+19	+26	680	800	860	1250
									-1	+2	+3				
25 40 _{-0.019}	62	51	50	58	8	5.1	5.5	6	+11	+20	+28	780	830	1620	2100
									-1	+3	+3				
30 47 _{-0.019}	76	62	60	68	10	6.1	6.6	6	+11	+20	+28	1250	1320	2000	2500
									-1	+3	+3				
40 62 _{-0.022}	98	80	75	80	13	8.1	9	6	+13	+24	+33	1720	1820	3300	4200
									-2	+3	+3				

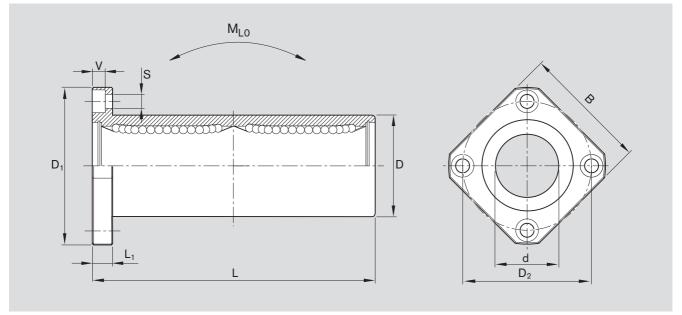
¹⁾ Statistically determined from the working bore diameter and shaft tolerance. Recommended housing bore tolerance: H6 or H7.

Standard Linear Bushings, R0741 Flanged-tandem normal

Structural design

- · Hardened and ground outer sleeve
- Plastic ball retainer
- Balls made of anti-friction bearing steel
- Internal seals

Standard Linear Bushings, R0741 Flanged-tandem corrosion-resistant


Structural design

- Hardened and ground outer sleeve made of corrosion-resistant steel
- Ball retainer made of corrosionresistant steel
- Balls made of corrosion-resistant anti-friction bearing steel
- Internal Seals

Shaft	Part n	umbers	Mass
Ød	normal	corrosion-resistant	
[mm]			[kg]
8	R0741 508 00	R0741 208 30	0.05
12	R0741 512 00	R0741 212 30	0.09
16	R0741 516 00	R0741 216 30	0.14
20	R0741 520 00	R0741 220 30	0.23
25	R0741 525 00	R0741 225 30	0.50
30	R0741 530 00	R0741 230 30	0.72
40	R0741 540 00	R0741 240 30	1.60

Note: Corrosion-resistant steel is steel to ISO 683-17 / EN 10088.

	Dimensions [mm]							No. of ball	Bore	Ra	dial	Load	d capa	cities [N]	Tipping	
									circuits	diameter	clear	ance ¹	dyn. C)	stat. C ₀		Moment M _{L0}
Ød	D	D ₁	D_2	В	L	L_1	V	S		tolerance	[µ	m]	min	max	min	max	stat.
					±0.3					[µm]	h6	h7					[Nm]
8	16 _{-0.013}	32	24	25	46	5	3.1	3.5	4	+9	+15	+21	340 3	390	470	660	4.5
										-1	+2	+2					
12	22 _{-0.016}	42	32	32	61	6	4.1	4.5	4	+9	+17	+23	650	750	840	1200	11
										-1	+2	+3					
16	26 _{-0.016}	46	36	35	68	6	4.1	4.5	4	+11	+19	+25	750 8	860	880	1260	13
										-1	+2	+3					
20	32 _{-0.019}	54	43	42	80	8	5.1	5.5	5	+11	+20	+28	1100 13	300	1720	2500	26
										-1	+3	+3					
25	40_0.019	62	51	50	112	8	5.1	5.5	6	+13	+22	+29	1250 13	350	3240	4200	61
										-2	+2	+3					
30	47_0.019	76	62	60	123	10	6.1	6.6	6	+13	+22	+29	2000 2	150	4000	5000	82
										-2	+2	+3					
40	62 _{-0.022}	98	80	75	151	13	8.1	9	6	+16	+27	+35	2800 30	000	6600	8400	165
										-4	+1	+2					

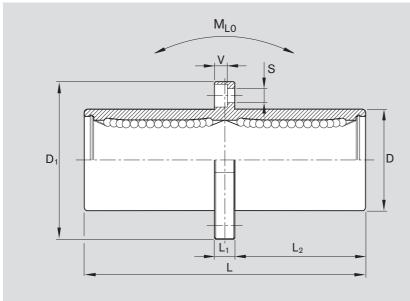
¹⁾ Statistically determined from the working bore diameter and shaft tolerance. Recommended housing bore tolerance: H6 or H7.

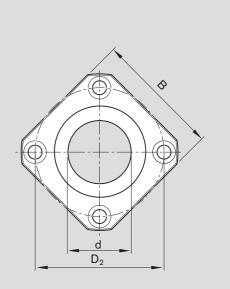
Standard Linear Bushings, R0742 Middle flanged normal

Structural design

- · Hardened and ground outer sleeve
- Plastic ball retainer
- Balls made of anti-friction bearing steel
- Internal seals

Standard Linear Bushings, R0742 Middle flanged corrosion-resistant


Structural design


- Hardened and ground outer sleeve made of corrosion-resistant steel
- Ball retainer made of corrosionresistant steel
- Balls made of corrosion-resistant anti-friction bearing steel
- Internal Seals

Shaft	Part n	umbers	Mass
Ød	normal	corrosion-resistant	
[mm]			[kg]
8	R0742 508 00	R0742 208 30	0.05
12	R0742 512 00	R0742 212 30	0.09
16	R0742 516 00	R0742 216 30	0.14
20	R0742 520 00	R0742 220 30	0.23
25	R0742 525 00	R0742 225 30	0.50
30	R0742 530 00	R0742 230 30	0.72
40	R0742 540 00	R0742 240 30	1.60

Note: Corrosion-resistant steels are steels toSO 683-17 / EN 10088.

			Dime	ensio	ns (mr	n]				No. of	Bore	Ra	dial	L	oad capa	acities [N]	Tipping
										ball	diameter	clear	ance ¹⁾	dyn	. C	stat.	C ₀	Moment M _{L0}
Ød	D	D_1	D_2	В	L	L ₁	L_2	V	S	circuits	tolerance	[µ	[µm]		min max		max	stat.
					±0.3						[µm]	h6	h7					[Nm]
8	16 _{-0.013}	32	24	25	46	5	20.5	3.1	3.5	4	+9	+15	+21	340	390	470	660	4.5
											-1	+2	+2					
12	22_0.016	42	32	32	61	6	27.5	4.1	4.5	4	+9	+17	+23	650	750	840	1200	11
											-1	+2	+3					
16	26 _{-0.016}	46	36	35	68	6	31.0	4.1	4.5	4	+11	+19	+25	750	860	880	1260	13
											-1	+2	+3					
20	32 _{-0.019}	54	43	42	80	8	36.0	5.1	5.5	5	+11	+20	+28	1100	1300	1720	2500	26
											-1	+3	+3					
25	40_0.019	62	51	50	112	8	52.0	5.1	5.5	6	+13	+22	+29	1250	1350	3240	4200	61
											-2	+2	+3					
30	47 _{-0.019}	76	62	60	123	10	56.5	6.1	6.6	6	+13	+22	+29	2000	2150	4000	5000	82
											-2	+2	+3					
40	62 _{-0.022}	98	80	75	151	13	69.0	8.1	9	6	+16	+27	+35	2800	3000	6600	8400	165
											-4	+1	+2					

¹⁾ Statistically determined from the working bore diameter and shaft tolerance. Recommended housing bore tolerance: H6 or H7.

Linear Sets with Standard Linear Bushings

Overview

Linear Sets

Closed type Standard type with fixed working bore diameter.

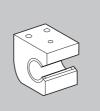
Adjustable type

For use when zero clearance or preload is required.

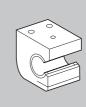
Open type

For long guideways when the shafts must be supported and high rigidity is required.

Open type, adjustable For use when zero clearance or preload is required.



With side opening


The load carrying capacity of open linear bushings is reduced when the load is applied to the "open" portion of the bushing. The Linear Set with side opening has been developed to overcome this disadvantage and to permit selective circumferential positioning of the open linear bushing. With side opening, adjustable For use when zero-clearance or preload is required.

Flanged type

This element was developed as a complement to our Linear Set series for use in applications requiring the shaft to be arranged at right angles to the mounting base.

R1073 ...

R1074 ...

Advantages/Technical Data/Notes for Mounting

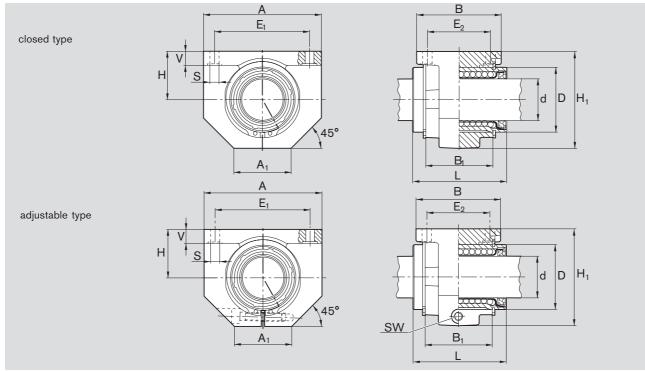
Advantages	 Thanks to their special material and sturdy wall thickness, precision housings offer very high rigidity regardless of the direction of loading, even when the load carrying capacity of the assembly is exploited to the full.
	• The housings are easy to align during mounting, so that no adverse stress is exerted on the linear bushing.
	 Their high precision guarantees trouble-free running of our linear bushings and full interchangeability of all units.
	• Since our housings are produced in large numbers, they offer the same high quality as the user's own design at a price that no in-house design can match for economy.
Technical data Operating temperatures	−20 °C to 80 °C, with brief peaks up to 100 °C
Notes for mounting Radial clearance	The radial clearance values given in the tables have been obtained by statistical methods and are representative of the values to be expected in actual practice. The Linear Sets R1066, R1068 and R1074 are adjusted to zero clearance on a shaft of diameter accurate to a tolerance of h5 (lower limit) before leaving the factory.
Vertical dimensions	The tables for Linear Sets contain tolerance values for the height dimension 'H'. These tolerance values have been obtained by statistical methods and are representative of the values to be expected in actual practice.
Screws	We recommend screws to ISO 4762-8.8 for mounting Linear Sets.

Linear Sets with Standard Linear Bushings

Linear Sets, R1065 closed type

Linear Sets, R1066 adjustable type

Structural design


- Precision Housing (lamellar graphite cast iron)
- Standard Linear Bushings with seals
- Two retaining rings

Shaft	Part numbers	Mass
Ød	with two seals	
[mm]		[kg]
8	R1065 208 00	0.09
12	R1065 212 00	0.16
16	R1065 216 00	0.27
20	R1065 220 00	0.45
25	R1065 225 00	0.89
30	R1065 230 00	1.33
40	R1065 240 00	2.51
50	R1065 250 00	3.68
60	R1065 260 00	6.73
80	R1065 280 00	15.32

Shaft	Part numbers	Mass
Ød	with two seals	
[mm]		[kg]
8	R1066 208 00	0.09
12	R1066 212 00	0.16
16	R1066 216 00	0.27
20	R1066 220 00	0.45
25	R1066 225 00	0.89
30	R1066 230 00	1.33
40	R1066 240 00	2.51
50	R1066 250 00	3.68
60	R1066 260 00	6.73
80	R1066 280 00	15.32

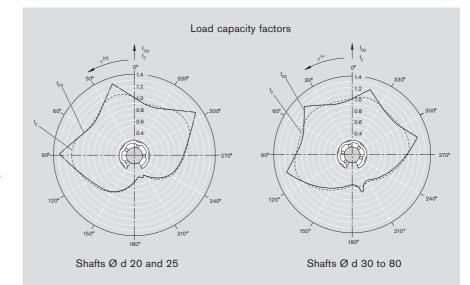
	Dimensions [mm]														al clea [µm	arance ²⁾	Tolerance Loa [µm] for capacitie		
														R10		R1066	Dimesion H ³⁾	dyn. C	stat. Co
Ød	D	н	H₁ ¹⁾		A ¹⁾	Δ 1)	B ¹⁾	B₁	E1	E,	S	V1)	5\//	with		111000	Dimesion II	uyn. O	stat. O_0
2 u	0		''1	-	~	1	D	D ₁	-1	-2	Ŭ	•	0,,,	h6	h7				
8	16	15	28	25	32	16	28	14	25±0.15	20±0.15	3.4	5	2	+18			+6	320	240
0	10	10	20	20	02	10	20	14	2010.10	2010.10	0.4	0	2	+5	+5		-17	020	240
12	22	18	35	32	42	21	32	20	32±0.15	23±0.15	4.5	5.5	2.5	+20			+6	420	280
														+5	+6	vn vn	-17		
16	26	22	42	36	50	26	35	22	40±0.15	26±0.15	4.5	6.5	3	+22		(lowe down	+5	580	440
														+5	+6	ed	-18		
20	32	25	50	45	60	28	42	28	45±0.15	32±0.15	4.5	8	3	+23	+31	Adjustedto zero-clearance on h5 shaft (lower limit) prior to delivery when screwed down	+5	1170	860
														+6	+6	scr scr	-19		
25	40	30	60	58	74	38	54	40	60±0.15	40±0.15	5.5	9	5	+25	+32	edto zero-clearance or prior to delivery when	+5	2080	1560
														+6	+7	wh	-19		
30	47	35	70	68	84	41	60	48	68±0.20	45±0.20	6.6	10	5	+25	+32	ara ery	+5	2820	2230
														+6	+7	-cle deliv	-19		
40	62	45	90	80	108	51	78	56	86±0.20	58±0.20	9	12	6	+30	+38	to c	+4	5170	3810
														+7	+8	to z	-21		
50	75	50	105	100	130	57	70	72	108±0.20	50±0.20	9	14	8	+30	+38	pri	+8	8260	6470
														+7	+8	Adjusto limit)	-25		
60	90	60	125	125	160	70	92	95	132±0.25	65±0.25	11	15	10	+33	+43	Hd ان	+8	11500	9160
														+7	+8	_	-26		
80	120	80	170	165	200	85	122	125	170±0.50	90±0.50	13.5	22	14	+37	+47		+7	21000	16300
														+8	+9		-28		

¹⁾ Tolerance DIN 1686-GTB 15.

³⁾ Minimum dimension based on shaft diameter d.

⁴⁾ The load capacities stated are minimal values as the position and direction of load cannot always be precisely defined.

²⁾ Statistically determined from the working bore diameter and shaft tolerances. Taking the Linear Bushing outer diameter and the housing bore into consideration, the radial clearance values for shaft h7 are similar to those given for the Standard Linear Bushing R0610 in the h7/H7 column under the heading "Adjustable radial clearance)


Linear Sets with Standard Linear Bushings

Linear Sets, R1067 open type

Linear Sets, R1068 open type, adjustable

Structural design

- Precision housing (spheroidal graphite cast iron)
- Retention by means of locating screw
- Standard Linear Bushings with seals

Shaft	Part numbers	Mass
Ød	with two seals	
[mm]		[kg]
20	R1067 220 00	0.39
25	R1067 225 00	0.74
30	R1067 230 00	1.14
40	R1067 240 00	2.25
50	R1067 250 00	3.13
60	R1067 260 00	5.78
80	R1067 280 00	13.15

open type, adjustable

Shaft	Part numbers	Mass
Ød	with two seals	
[mm]		[kg]
20	R1068 220 00	0.38
25	R1068 225 00	0.74
30	R1068 230 00	1.12
40	R1068 240 00	2.20
50	R1068 250 00	3.11
60	R1068 260 00	5.72
80	R1068 280 00	13.09

	Dimensions [mm]														Rad	ial cle	arance	Tolerance	Loa	ad
														[°]		[µm]		[µm] for	capacities ⁵⁾ [N]	
															R10	67	R1068	dimension	dyn. C	stat. C ₀
Ød	D	Н	H ₂ ²⁾	L	A ²⁾	B ²⁾	B ₁	E1	E ₂	S	V ²⁾	W ³⁾	SW	α		Shaft		H ⁴⁾		
															h6	h7				
20 ¹⁾	32	25	42	45	60	42	28	45±0.15	32±0.15	4.5	8	10	2.5	60	+36	+42		+5	1280	970
															+4	+6	aft	-19		
25 ¹⁾	40	30	51	58	74	54	40	60±0.15	40±0.15	5.5	9	12.5	3	60	+38		hen hen	+5	2270	1750
															+4	+6	y wh	-19		
30	47	35	60	68	84	60	48	68±0.20	45±0.20	6.6	10	12.5	3	50	+38	+44	e on very	+5	2890	2390
															+4	+6	trance o delivi down	-19		
40	62	45	77	80	108	78	56	86±0.20	58±0.20	9	12	16.8	4	50	+45	+52	to d d	+4	5280	4000
															+5	+7	V. joi - cl	-21		
50	75	50	88	100	130	70	72	108±0.20	50±0.20	9	14	21	5	50	+45	+52	zero it) pi scre	+8	8470	6900
															+5	+7	to ze limit) sci	-25		
60	90	60	105	125	160	92	95	132±0.25	65±0.25	11	15	27.2	6	54	+50	+59	ver	+8	11800	9780
															+5	+7	justed (lower	-26		
80	120	80	140	165	200	122	125	170±0.50	90±0.25	13.5	22	36.3	8	54	+54	+62	Ad	+7	21500	17400
															+6	+9		-28		

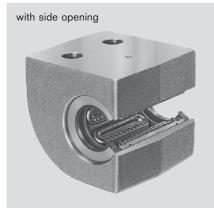
¹⁾ Contrary to the illustration, the locating screw is on the adjusting side in these sizes.

- ²⁾ Tolerance DIN 1685-GTB 15.
- ³⁾ Minimum dimension based on shaft diameter d.

 $^{\scriptscriptstyle 4)}$ When screwed down, relative to shaft nominal dimension d.

 $^{\rm 5)}$ The load capacities apply when the load is acting along the line $\varrho=0^{\circ}.$

Linear Sets with Standard Linear Bushings

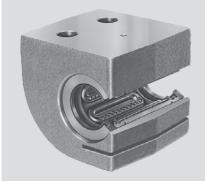

Linear Sets, R1073 with side opening

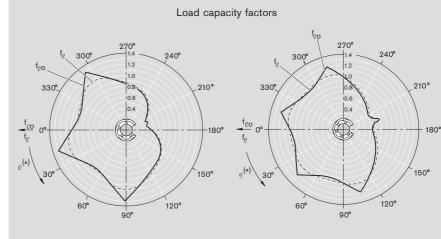
Linear Sets, R1074 with side opening, adjustable

Structural design

- Housing with side opeing (spheroidal graphite cast iron)
- Retention by means of grooved taper pin
- Standard Linear Bushing
- External seals

The load carrying capacity of open Linear Bushings is considerably reduced when the load is applied to the "open" portion of the bushing. The Linear Set with side opening has been developed to overcome this disadvantage and to permit selective circumferential positioning of the open Linear Bushing.

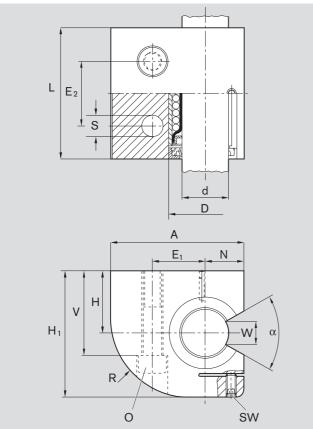


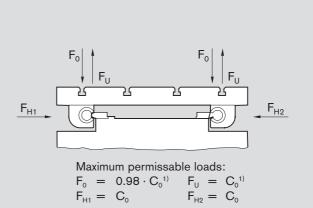

Shaft Part numbers Mass Ød with two seals [mm] [kg] 20 R1073 220 00 1.0 25 R1073 225 00 1.9 30 R1073 230 00 2.8 40 R1073 240 00 4.8

R1073 250 00

Shaft	Part numbers	Mass
Ød	with two seals	
[mm]		[kg]
20	R1074 220 00	1.0
25	R1074 225 00	1.9
30	R1074 230 00	2.8
40	R1074 240 00	4.8
50	R1074 250 00	8.0

with side opening, adjustable




Shafts Ø d 20 and 25

50

Shafts Ø d 30 to 80

8.0

	Dimensions [mm]														Angle	Radia	al clea	arance ⁶⁾	Tolerance	Loa	ad
															[°]		[µm]	[µm] for	capacitie	es ⁸⁾ [N]
																R10	73	R1074	dimension	dyn. C	stat. C ₀
Ød	Н	H ₁ ³⁾	L ³⁾	A ³⁾	E ₁	E2	Ν	D	V	SS	SW	O ⁴⁾	W ⁵⁾	R ³⁾	α	with S	Shaft		H ⁷⁾		
																h6	h7				
202)	30	60	60	60	22±0.25	30±0.25	17	32	42	9	2.5	M8x60	10	37	60	+36 ·	+42	Lo o Ly	+5	1280	970
																+4	+6	e o or to owi	-19		
25 ²⁾	35	72	73	75	28±0.25	36±0.25	21	40	50	11	3	M10x70	12.5	45	60	+38 ·	+44	o-clearance on limit) prior to crewed down	+5	2270	1750
																+4	+6	lear nit) ewe	-19		
30	40	82	85	86	34±0.50	42±0.50	25	47	55	13.5	3	M12x80	12.5	51	50	+38 ·	+44	o-c r lin scre	+5	2890	2390
																+4	+6	zero wer en so	-19		
40	45	100	97	110	43±0.50	48±0.50	32	62	67	15.5	4	M14x90	16.8	66	50	+45 ·	+52	t (lo whe	+4	5280	4000
																+5	+7	stec haf ery	-21		
50	50	115	125	127	50±0.50	62±0.50	38	75	78	17.5	5	M16x110	21	77	50	+45 ·	+52	Adjusted h5 shaft delivery v	+8	8470	6900
																+5	+7	ξτρ	-25		

¹⁾ Sizes 20 and 25: $F_0 = 0.85 \cdot C_0$; $F_U = 1.27 \cdot C_0$.

²⁾ Contrary to the illustration, the locating screw is on the adjusting side in these sizes.

³⁾ Tolerance DIN 1685-GTB 16.

⁴⁾ Cylinder screws ISO 4762-8.8.

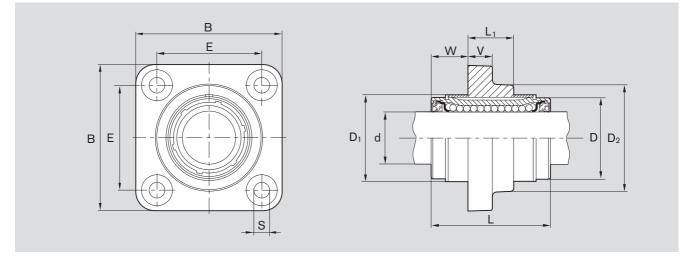
⁵⁾ Minimum dimension based on shaft diameter d.

 $^{\ensuremath{\ensuremath{^{\gamma}}}}$ When screwed down, relative to shaft nominal dimension d.

⁸⁾ The load capacities apply when the load is acting along the line ρ = 0° in direction F_{H1} or F_{H2}.

⁶⁾ When screwed down, relative to shaft.

Linear Sets with Standard Linear Bushings


Linear Sets, R1081 Flanged

Structural design

- Flanged Housing (lamellar graphite cast iron)
- Two retaining rings, plus two spacer rings (steel) for sizes 12 to 40
- Standard Linear Bushing with seals
- The radial clearance is not adjustable

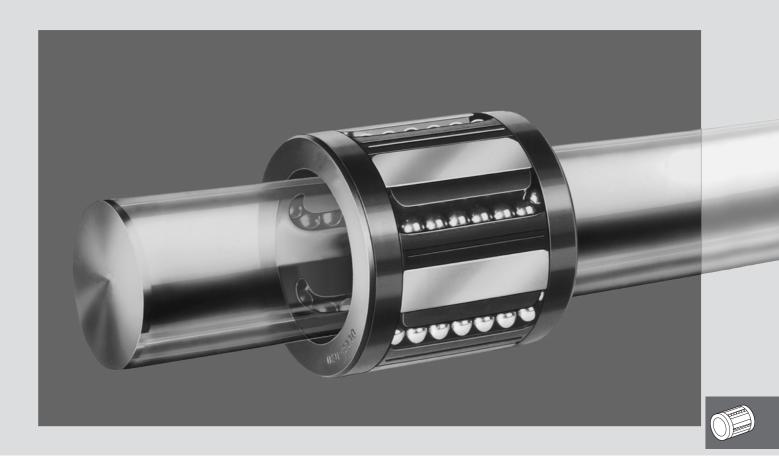
Shaft	Part numbers	Mass
Ød	with two seals	
[mm]		[kg]
12	R1081 212 00	0.11
16	R1081 216 00	0.18
20	R1081 220 00	0.33
25	R1081 225 00	0.63
30	R1081 230 00	1.00
40	R1081 240 00	1.90
50	R1081 250 00	4.00
60	R1081 260 00	7.40
80	R1081 280 00	14.70

				D	imensio	ns [mm]					Radial cle	earance ²⁾	Load cap	bacities ³⁾
											[µr	n]	[N	1]
Ød	B ¹⁾	L	L ₁	D	D ₁	D ₂ ¹⁾	E	S	V ¹⁾	W	Sh	aft	dyn. C	stat. C ₀
					+0.8			H13			h6	h7		
12	42	32	12	22	24	28	30±0.12	5.5	6	10	+20	+26	420	280
											+5	+6		
16	50	36	15	26	28.5	34	35±0.12	5.5	8	10.5	+22	+28	580	440
											+5	+6		
20	60	45	18	32	35	42	42±0.15	6.6	10	13.5	+23	+31	1170	860
											+6	+6		
25	74	58	23	40	43	54	54±0.15	6.6	12	17.5	+25	+32	2080	1560
											+6	+7		
30	84	68	26	47	49.5	62	60±0.25	9.0	14	21	+25	+32	2820	2230
											+6	+7		
40	108	80	36	62	66.5	80	78±0.25	11	16	22	+30	+38	5170	3810
											+7	+8		
50	130	100	72	75	81	98	98±0.25	11	18	14	+30	+38	8260	6470
											+7	+8		
60	160	125	95	90	96	115	120±0.50	14	22	15	+33	+43	11500	9160
											+7	+8		
80	200	165	125	120	129	150	155±0.50	14	26	20	+37	+47	21000	16300
											+8	+9		

¹⁾ Dimensional tolerance DIN 1686-GTB 15.

²⁾ Statistically determined from the working bore diameter and shaft tolerances. Taking the Linear Bushing outer diameter and the housing bore into consideration, the radial clearance values for shaft h7 are similar to those given for the Standard Linear Bushing R0610 in the h7/H7 column under the heading "Adjustable radial clearance".

³⁾ The load capacities stated are minimal values as the position and direction of load cannot always be precisely defined.


The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the "C" figures in the table must be multiplied by a factor of 1.26.

Segmental Linear Bushings

The Advantages

- The Segmental Linear Bushing with plastic reinforced housing is the most economical Linear Set used for general applications
- Shortest Linear Bushing capable of the longest stroke with predetermined shaft length
- Also available in corrosion-resistant for the medical, chemical and food industries
- With seperate seals or without seals

Segmental Linear Bushings

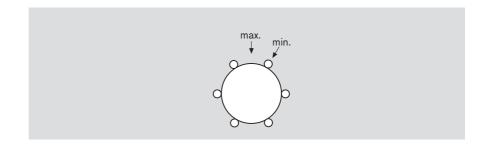
Technical Data

Please observe the general technical principles and mounting instructions at the beginning of this catalog as well as the additional technical data given below.

Friction

The friction μ of unsealed Segmental Linear Bushings using oil as a lubricant lies between 0.001 and 0.004.

The friction is lowest under high load. It may, however, be greater than the stated value when only a slight load is applied. The frictional drag (see table) in the linear bushings sealed at both ends and not subject to radial loading depends on the speed and the type of lubrication.

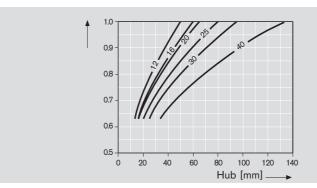

Shaft Ø d [mm]	Breakaway force [N] Approx.	Frictional drag [N] Approx.
12	3	1.5
16	4.5	2
20	5	2.5
25	7	3
30	9	4
40	12	5

Velocity	$v_{max} = 3 \text{ m/s}$
Acceleration	$a_{max} = 150 \text{ m/s}^2$
Operating Temperature	-20 °C to 100 °C

Direction of load and its influence on the load capacity

The stated load capacities are valid for installation in "min" position and should be taken as the basis for calculation.

In applications where the direction of load is exactly known and where the Segmental Linear Bushings can be mounted in the "max" position, the load capacity rating must be multiplied by the factors f_{max} (dynamic load capacity C) or $f_{0 max}$ (static load capacity C_0).


Mounting, Retention

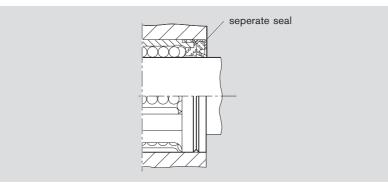
Reduced load capacity in short-stroke applications

Operation under difficult conditions

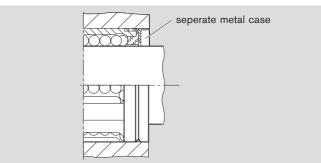
In short-stroke applications, the service life of the shafts is shorter than that of the segmental Linear Bushings.

For this reason, the load capcities C listed in the tables must be multiplied by the factor f_{w} .

In permanently humid or wet environments due for instance to water-based coolants/ lubricants, we recommend the use of the corrosion-resistant type to DIN 17230/ EN 10088.


Use of an arbor is recommended for installation of Segmental Linear Bushings into the housing bore (see "Mounting Instructions" in the General Technical Data at the beginning of this catalog).

When Segmental Linear Bushings are mounted in an adjustable housing we recommend installing the linear bushing with one of its load bearing plates covering the slot in the housing; this will prevent dirt from entering the linear bushing.


Retention

Notes for Mounting

Retention by means of a seal with a metal case

Retention by means of a metal case

Segmental Linear Bushings

Segmental Linear Bushings, R0668 normal

Structural Design

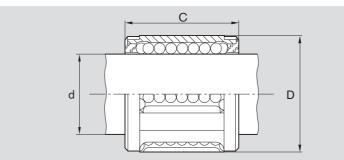
- Balls made of anti-friction bearing steel
- Hardened steel segmental load bearing plates
- Ball retainer made of polyamide

corrosion-resistant type

Structural Design

- Balls made of anti-friction corrosionresistant bearing (to ISO 683-17 / EN 10088)
- Corrosion-resistant segmental load bearing plates
- Ball retainer made of polyamide 11

Shaft	Part n	Mass	
Ød	normal	corrosion-resistant	
[mm]			[kg]
12	R0668 012 00	R0668 012 30	0.013
16	R0668 016 00	R0668 016 30	0.020
20	R0668 020 00	R0668 020 30	0.031
25	R0668 025 00	R0668 025 30	0.057
30	R0668 030 00	R0668 030 30	0.096
40	R0668 040 00	R0668 040 30	0.170



Shaft	Part numbers						
Ød	Seal normal ¹⁾	Seal corrosion-resistant ¹⁾					
[mm]							
12	R1331 512 00	R1331 512 30					
16	R1331 516 00	R1331 516 30					
20	R1331 520 00	R1331 520 30					
25	R1331 525 00	R1331 525 30					
30	R1331 530 00	R1331 530 30					
40	R1331 540 00	R1331 540 30					

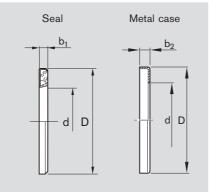
Shaft	Part n	umbers
Ød	Metal case normal ¹⁾	Metal case corrosion-resistant ¹⁾
[mm]		
12	R0901 043 00	R0901 043 30
16	R0901 044 00	R0901 044 30
20	R0901 045 00	R0901 045 30
25	R0901 046 00	R0901 046 30
30	R0901 047 00	R0901 047 30
40	R0901 048 00	R0901 048 30

¹⁾ For axial retention

Dime	ensions	[mm]	No. of ball	Rad	al clearance	[µm]	Load capacities [N]							
			circuits		shaft/bore			nor	mal		corrosion-resistant			ıt
							dyr	n. C	stat. C ₀		dyn. C		stat. C ₀	
Ød	D	С					min	max	min	max	min	max	min	max
		js14		h7/H7	h7/JS7	h6/JS6								
12	20	24	5	+37	+26	+19	480	570	420	620	240	290	330	490
				+2	-8	-8								
16	25	28	5	+37	+26	+19	720	860	620	910	360	430	490	730
				+2	-8	-8								
20	30	30	6	+38	+28	+20	1020	1080	870	1120	510	540	690	890
				+2	-9	-9								
25	37	37	6	+42	+29	+21	1630	1730	1360	1750	820	870	1090	1400
				+2	-10	-10								
30	44	44	6	+42	+29	+21	2390	2530	1960	2510	1200	1270	1570	2000
				+2	-10	-10								
40	56	56	6	+48	+33	+23	3870	4100	3270	4180	1940	2050	2610	3340
				+2	-13	-12								

The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the "C" figures in the table must be multiplied by a factor of 1.26.

Seal


Structural design

- Metal case
- Elastomer seal

Metal case

Material:

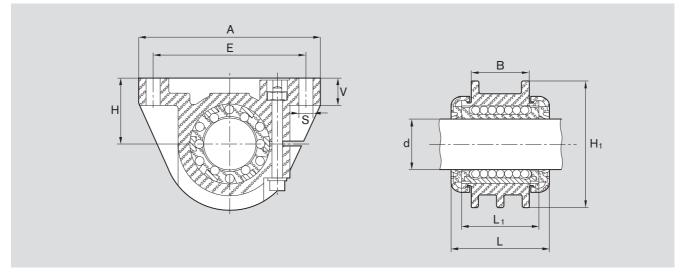
Steel, normal or corrosion-resistant

	Dimens	ions [mm]	
Ød	D ¹⁾	b ₁	b ₂
		+0.3	+0.5
12	20	3	3
16	25	3	3
20	30	4	4
25	37	4	4
30	44	5	5
40	56	5	5

¹⁾Outer diameter D is about 0.1 mm oversized. No special retention elements are necessary.

Linear Sets with Segmental Linear Bushings

Linear Sets, R1060 adjustable normal or corrosion-resistant


Structural Design

- Pillow Block housing (reinforced polyamide)
- Segmental Linear Bushing
- Two seals with snap covers
- · Bolt, washer, nut
- Adjustable radial clearnace

Shaft	Part nu	mbers	Mass
Ød	normal	corrosion-resistant ¹⁾	
[mm]			[kg]
12	R1060 212 00	R1060 212 20	0.041
16	R1060 216 00	R1060 216 20	0.063
20	R1060 220 00	R1060 220 20	0.077
25	R1060 225 00	R1060 225 20	0.158
30	R1060 230 00	R1060 230 20	0.277
40	R1060 240 00	R1060 240 20	0.470

¹)Linear Bushing, corrosion-resistant type (anti-friction bearing steel to DIN 17230 / EN 10088.)

Dimensions [mm]								Radial clearance	Load capacities ²⁾ [N]					
										[µm]	nc	ormal	corrosio	n-resistant
Ød	H ¹⁾	H ₁	L	L ₁	А	В	E	S	V		dyn. C	stat. C _o	dyn. C	stat. C ₀
	±0.05													
12	18	35	31	24	55	20	43±0.1	4.4	8	ر =: م م	480	420	240	330
16	22	42	35	28	66	22	53±0.15	5.5	9.5	rer ver	720	620	360	490
20	25	50	38	30	69	23	58±0.15	5.5	10.5	to to wer delir	1020	870	510	690
25	30	60	46	37	87	30	72±0.2	6.6	11.5	sted ranc (lo r to	1630	1360	820	1090
30	35	70	55	44	97	36	80±0.2	6.6	13	adjusted clearanc shaft (lo prior to	2390	1960	1200	1570
40	45	90	67	56	124	48	103±0.2	8.6	17		3870	3270	1940	2610

¹⁾ Minimum dimension based on shaft diameter d.

²⁾ The load capacities stated are minimal values as the position and direction of load cannot always be precisely defined.

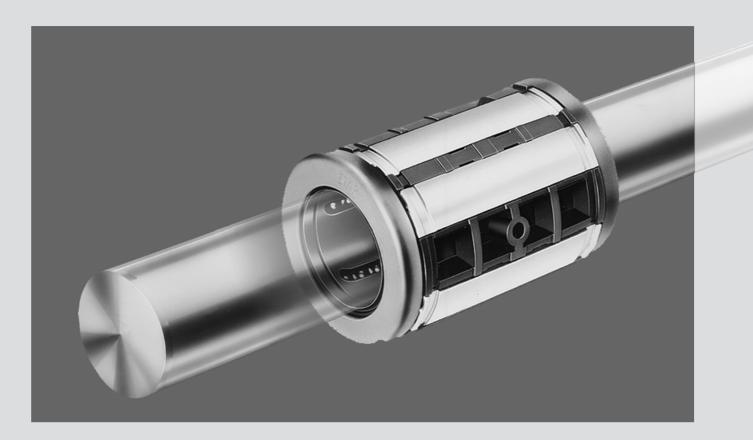
The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the "C" figures in the table must be multiplied by a factor of 1.26.

Super Linear Bushings 🕮 and 🕮

The Advantages

- Highly precise Linear Bushings for heavy dynamic load-carrying capacity
- Steel insert with ground groove tracks and ground spine for highest precision
- Super
 with more tracks than Super
 and
 for high capacity
- Super $\ensuremath{\underline{\textbf{B}}}$ with even more tracks for highest capacity and stiffness
- High running speed (up to 5 m/s)
- Self-aligning with compensation for shaft deflection
- With or without integrated seals
- Optional longtidunal seal for open Linear Bushings
- Linear sets with aluminum housing

Closed (Super 1)


Open (Super 1)

Closed (Super 3)

Open (Super 💷)

Super Linear Bushings 🖸 and 🕮

Technical Data

Please observe the general technical principles and mounting instructions at the beginning of this catalog as well as the additional technical data given below.

Dimensions/Interchangeability	Bushing retentio	js 🖾 and 🗉 as well	as Standard Linea load capacity and l	e outside dimensior r Bushings (caution ubrication). For this	: different
Abdichtung	Two-fol		lip prevents the pe	enetration of dirt and sive loss of lubrican	
	all servi	ce conditions. The o	open types also hav	, floating into good o ve a seal strip to fully Ils can be replaced	y seal the gap
Friction	forces. between The fric value w For Sup subject	The friction μ of uns n 0.001 and 0.004. tion is lowest under hen only a slight loa per Linear Bushings	ealed Super Linear high load. It may, h d is applied. fitted at both ends	ciple. Extremely low Bushings using oil nowever, be greater with internal wiper s the table below) depe	as a lubricant lies than the stated seals and not
	Shaft	closed a	nd open	ope	en
	Ød	with internal		fully s	
		Breakaway force	Frictional drag	Breakaway force	Frictional drag
	mm	[N] approx.	[N] approx.	[N] approx.	[N] approx.
	20	5	2.5	7.5	4
	25	7	3	10.5	4.5

9

12

15

4

5

6

7

13.5

22.5

18

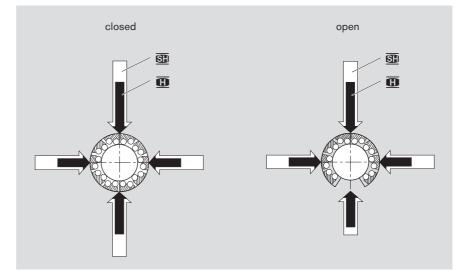
27

6

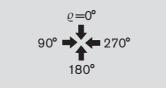
9

7.5

10.5

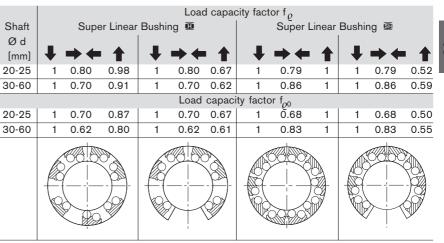

30

40


50

	60	18
Velocity	v _{max} =	5 m/s
Acceleration	a _{max} =	150 m/s²
Operating temperature	−20 °C	to 100 °C

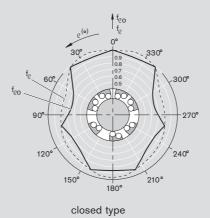
Direction of load and its influence on the load-carrying capacity

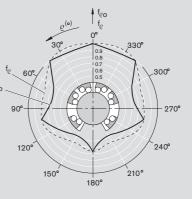

Main load direction

Load direction factors

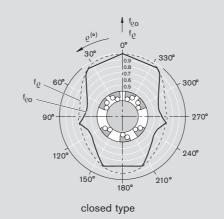
The load capacities C and C₀ apply when the load is acting along the line $\rho = 0^{\circ}$.

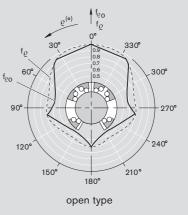
If the load is acting in any other direction, these load capacities must be multiplied by the factors f_{ϱ} (dynamic load capacity C) or $f_{\varrho 0}$ (static load capacity C_0).

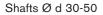


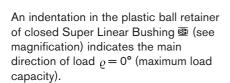

Super Linear Bushings 🗰 and 🕮

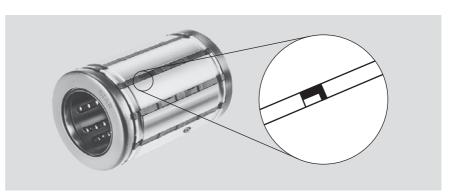
Technical Data

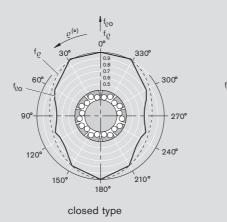

Load direction factors

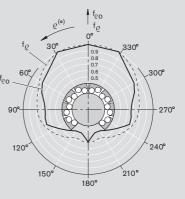

Super Linear Bushing
Shafts Ø d 20-25


open type

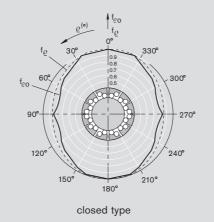


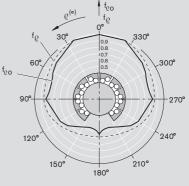

Shafts Ø d 30-60


Super Linear Bushings can be installed in any mounting position. The mounting position should be chosen so that the load acts mainly along the line $\rho = 0^\circ$. Super Linear Bushing Shafts Ø d 20-25

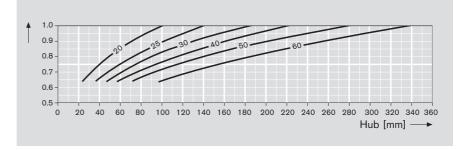


Super Linear Bushings can be installed in any mounting position. The mounting position should be chosen so that the load acts mainly along the line $\varrho = 0^\circ$.

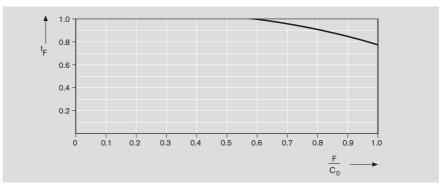




open type


open type

Super Linear Bushings
and
and


Technical Data

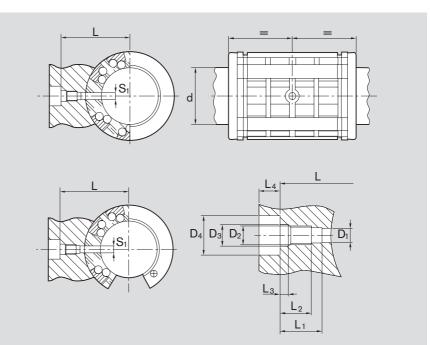
Reduced load capacity in shortstroke applications In short-stroke applications, the service life of the shafts is shorter than that of the Super Linear Bushings. For this reason, the load capacities C given in the tables must be multiplied by the factor f_w .

Reduced load capacity at high loads

Reduced load capacity at high loads F. The dynamic load capacity must be multiplied by the load factor $f_{\rm F}\!.$

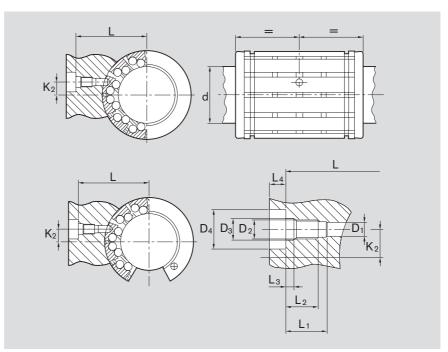
Self-alignment	Super Linear Bushings automatically compensate for alignment errors of up to 30'. No reduction in load-carrying capacity due to pressure between bushing edge and shaft.
Running speed and characteristics	High acceleration and running speed due to: • Hard-wearing ball retainer
	Smooth and stutter-free running of the balls in the ball tracks due to:Optimized track geometry at both endsGround ball tracks
Ground outer surfaces	The ground outer surface of the load bearing plates produces very good contact between the steel bearing plates and the inner surface of the mounting hole.
Load-carrying capacity and service life	The high number of ball tracks provides a very high load-carrying capacity and and service life
Lubrication	In-service lubrication is possible via the lube hole in closed type \blacksquare or via the grease pockets in the ball retainer in types \blacksquare and \blacksquare .
Retention	Super Linear Bushings and feature simple and economical radial and axial retention by locating screw.

Super Linear Bushings 🖽 and 🕮


Customer-built housing

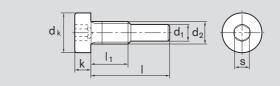
Retention

Super Linear Bushing \blacksquare Retention by means of locating screw inserted through hole S₁.


Important

Observe position of bearing plates relative to locating screw hole S_1 .

Shaft				Dim	ensions [mm]					Locating screw		
[mm]											Part numbers	Tightening torque	
Ød	S ₁	L ±0.1	L ₁ +0.2	L ₂ +0.2	L ₃ +0.2	L ₄ min	D ₁ +0.1	D_2	D ₃ H13	D ₄ H13		[Nm]	
20	3	27	9	7	2	3.2	3.1	M4	4.5	8	R3427 008 09	1.9	
25	3.5	33.5	11	8,5	2.3	4	3.6	M5	5.5	10	R3427 003 09	3.8	
30	3.5	37	11	8,5	2.3	4	3.6	M5	5.5	10	R3427 003 09	3.8	
40	3.5	44.5	11	8,5	2.3	4	3.6	M5	5.5	10	R3427 003 09	3.8	
50	4.5	59.5	17	14	3	4.7	4.6	M6	6.6	11	R3427 004 09	6.7	
60	6	72.5	22	18	4	6	6.2	M8	9	15	R3427 007 09	16	


Super Linear Bushing
Retention by means of locating screw.

Shaft				Dim	ensions [[mm]					Locating s	crew
[mm]											Part numbers	Tightening torque
Ød	L	K ₂	L ₁	L ₂	L ₃	L_4	D ₁	D_2	D3	D_4		[Nm]
	+0,2		+0,2	min.	+0,2	min	+0,1		H13	H13		
20	26.85	1.3	9	7	2	3.2	2.6	M4	4.5	8	R3427 001 09	1.9
25	30.75	2	9	7	2	3.2	2.6	M4	4.5	8	R3427 001 09	1.9
30	38.15	7	11	8.5	2,3	4	3.6	M5	5.5	10	R3427 003 09	3.8
40	44.75	9.5	11	8.5	2,3	4	3.6	M5	5.5	10	R3427 003 09	3.8
50	59.75	10	17	14	3	4.7	4.6	M6	6.6	11	R3427 004 09	6.7

Locating screw For retention of Super Linear Bushing and
.

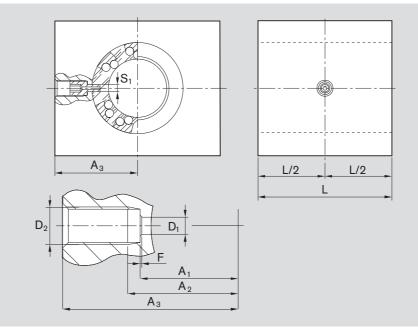
		Din	nensions	[mm]			Locating	screw
							Part numbers	Tightening
								torque
d ₂	d _k	d ₁	I	l ₁	k	s		[Nm]
M4	7	2.5	12	6.3	2.8	2.5	R3427 001 09	1.9
M4	7	3	14.1	6.5	2.8	2.5	R3427 008 09	1.9
M5	8.5	3.5	17	8	3.5	3	R3427 003 09	3.8
M6	10	4.5	26	13.5	4	4	R3427 004 09	6.7
M8	13	6	33	17	5	5	R3427 007 09	16

All other dimensions to DIN 7984.

Super Linear Bushings
and
and

Customer-built housing

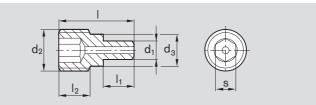
Lubrication and retention


Super Linear Bushing

(closed type) Lubrication and retention by means of hollow screw inserted through hole S₁. Dimensions given here are for customer-built housing.

Important:

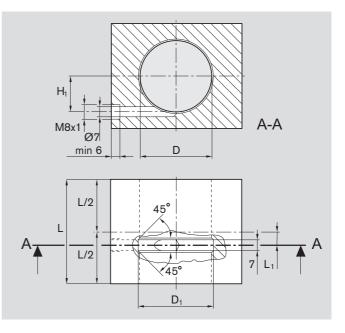
Observe the position of load bearing plates relative to hole S_1 .


The lubrication channels shown here have been deigned for lubrication with grease. If oil is used instead, check whether all anti-friction bearings are being properly lubricated.

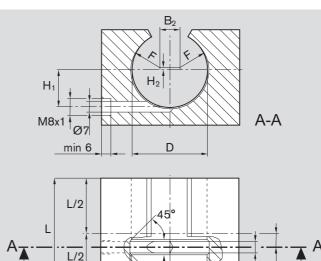
Part numbers Super Linear				Dimension	s [mm]		Hollow s Part numbers	crew Tightening torque		
Bushing			_	_				_		
Ð	S ₁	L	D ₁	D_2	A ₁	A ₂	A ₃	F		[Nm]
		min.	+0.1		±0.1	max.	min.			
R0732 220 40	3	46	3.1	M8x1	18.5	20.5	31	0.3x45°	R3432 010 00	5.5
R0732 225 40	3.5	59	3.6	M8x1	22.5	25	38	0.3x45°	R3432 007 00	5.5
R0732 230 40	3.5	69	3.6	M8x1	26	28.5	41.5	0.3x45°	R3432 007 00	5.5
R0732 240 40	3.5	81	3.6	M8x1	33.5	36	49	0.3x45°	R3432 007 00	5.5
R0732 250 40	4.5	101	4.6	M8x1	42	44.5	59	0.3x45°	R3432 008 00	5.5
R0732 260 40	6	126	6.2	M10x1	51	53.5	71.5	0.3x45°	R3432 009 00	9.5

Hollow screw

For lubrication and retention of Super Linear Bushing \blacksquare (closed type) through hole S₁.



		Dimer	nsions (m	im]			Hollow s	crew
				Part numbers	Tightening			
								torque
d ₂	d ₁	d ₃	I	l ₁	$ _2$	s		[Nm]
M8x1	3	6,5	10,5	5	3,5	4	R3432 010 00	5,5
M8x1	3,5	6,5	14,5	6	5,6	4	R3432 007 00	5,5
M8x1	4,5	6,5	18	8	7	4	R3432 008 00	5,5
M10x1	6	8,5	25	11,5	10,2	5	R3432 009 00	9,5


Lubrication

Super Linear Bushing
(closed type)
Lubrication channel, ring groove and
lube nipple thread are for lubricating
with grease. Dimensions given for
customer-built housing.

Part numbers Super-		Dime	ensions [m	ım]	
Linear Bushing	D	L	L ₁	H ₁	D ₁
81		min	+0.5		±0.2
R0730 220 40	32	46	7	16	34
R0730 225 40	40	59	8.5	20	42
R0730 230 40	47	69	8.5	23.5	50
R0730 240 40	62	81	10.5	31	66
R0730 250 40	75	101	11.5	37.5	79

Super Linear Bushing
and
(open type)
Lubrication channel, ring groove and
lube nipple thread are for lubricating
with grease. Dimensions given for
customer-built housing.

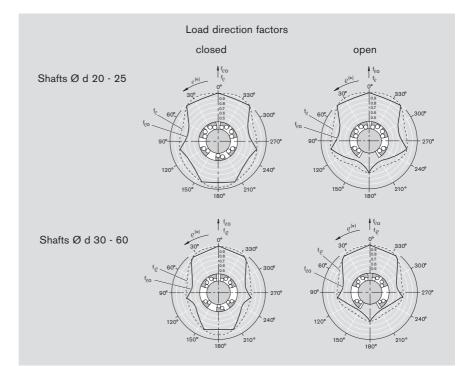
45

 D_1

7 L₁

Part nu	mbers				Dimensi	ons [mm]			
Super Linea	ar Bushing								
Ō	<u>8</u>	D	L	L ₁	H ₁	D ₁	B_2	H_2	F
			min.	+0,5		±0,2			
R0733 220 45	R0731 220 45	32	46	7	16	34	8	-	R13
R0733 225 45	R0731 225 45	40	59	8.5	20	42	11,9	0,5	R15
R0733 230 45	R0731 230 45	47	69	8.5	23.5	49	12.8	1	R18
R0733 240 45	R0731 240 45	62	81	10.5	31	66	19.9	1,1	R23
R0733 250 45	R0731 250 45	75	101	11.5	37.5	79	22.6	2	R28
R0733 260 45	_	90	126	13	45	94	30.8	3	R31.5

Super Linear Bushing

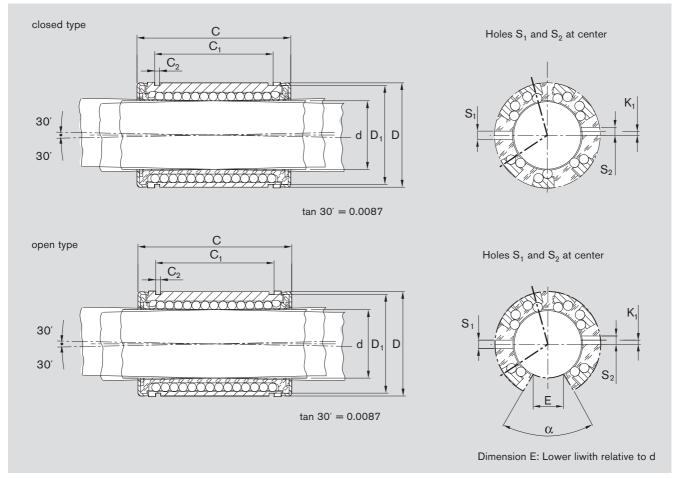

Super Linear Bushing, R0732 closed type

Super Linear Bushing, R0733 open type

Structural design

- · POM ball retainer
- Hardened steel segmental load bearing plates with ground ball tracks and ground outer surfaces
- Two metal holding rings
- With or without twin-lip seal rings
- With or without axial seal strip.

For precise values for the 4 main directions of load see "Technical Data – Load capacity factors".



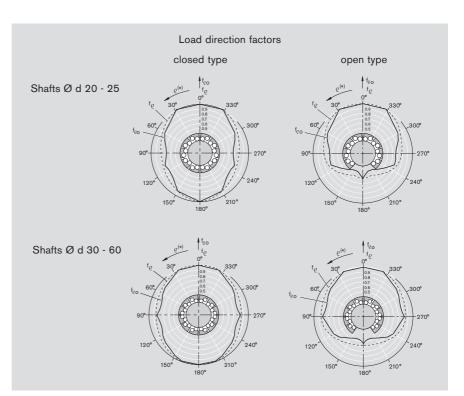
Shaft	Part nu	mbers	Mass
Ød	without seal	with two seals	
[mm]			[kg]
20	R0732 020 00	R0732 220 40	0.070
25	R0732 025 00	R0732 225 40	0.150
30	R0732 030 00	R0732 230 40	0.210
40	R0732 040 00	R0732 240 40	0.400
50	R0732 050 00	R0732 250 40	0.700
60	R0732 060 00	R0732 260 40	1.200

With one seal ring: R0732 1.. 40 or R0733 1.. 40

	Dimensions [mm]						No. o		Angle	Ra	dial clea	rance [µ	ım]	Load capa	acity ¹⁾ [N]			
Ød	D	С	C ₁	C_2	D ₁	S_1	S_2	K ₁	Е	circ	uits	α		Shaft	/bore			
		h13	H13			+0.1	+0.1				()	[°]	h7/H7	h7/JS7	h6/JS6	h6/K6	dyn. C	stat. C ₀
20	32	45	31.2	1.6	30.5	3.0	-	-	9.5	7	6	60	+49	+37	+28	+23	2520	1880
													+13	0	+1	-4		
25	40	58	43.7	1.85	38.5	3.5	3	-1.5	12	7	6	60	+49	+37	+28	+23	4430	3360
													+13	0	+1	-4		
30	47	68	51.7	1.85	44.5	3.5	3	2	12.8	7	6	60	+49	+37	+28	+23	6300	5230
													+13	0	+1	-4		
40	62	80	60.3	2.15	59	3.5	3	1.5	16.8	7	6	60	+57	+42	+31	+25	9680	7600
													+14	-1	+1	-4		
50	75	100	77.3	2.65	72	4.5	5	2.5	22.1	7	6	60	+57	+42	+31	+25	16000	12200
													+14	-1	+1	-4		
60	90	125	101.3	3.15	86.5	6.0	-	-	27	7	6	60	+65	+47	+34	+27	23500	18700
													+16	-1	+1	-6		

¹⁾ The figures given for load capacity are maximum values as the position and load direction can be precisely defined.

The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the 'C' figures in the table must be multiplied by a factor of 1.26.

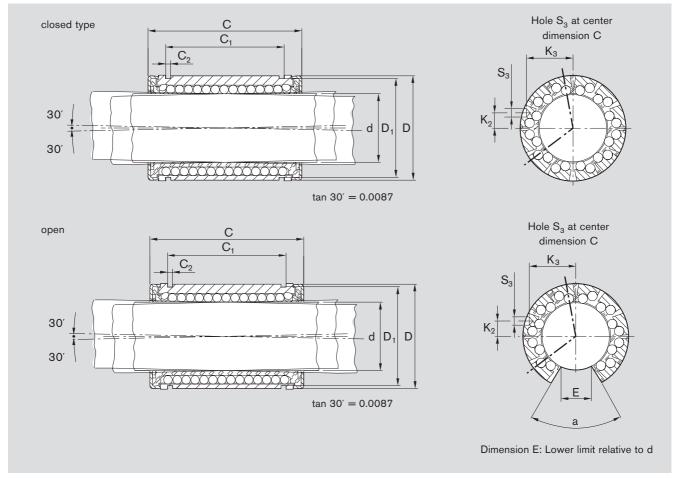

Super Linear Bushing 3

Super Linear Bushing, R0730 closed type

Super Linear Bushing, R0731 open type

- Structural design
- · Polyacetal ball retainer
- Hardened steel segmental load bearing plates with ground ball tracks and ground outer surfaces
- Two metal holding rings
- With or without twin-lip seal rings
- With or without axial seal strip.

For precise values for the 4 main directions of load see "Technical Data – Load capacity factors".



Shaft	Part nu	mbers	Mass
Ød	without seal	with two seals	
[mm]			[kg]
20	R0730 020 00	R0730 220 40	0.090
25	R0730 025 00	R0730 225 40	0.190
30	R0730 030 00	R0730 230 40	0.300
40	R0730 040 00	R0730 240 40	0.600
50	R0730 050 00	R0730 250 40	1.050

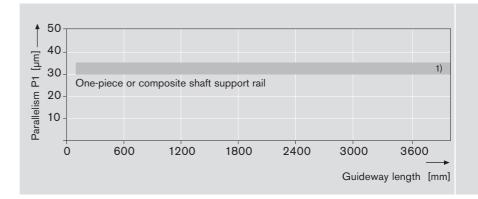
With one seal: R0730 1.. 40 oder R0731 1.. 40.

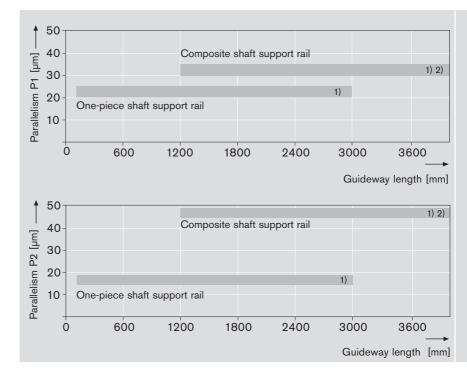
Shaft		Part numbers		Mass
Ød	without seal	with two seals	fully sealed	
[mm]				[kg]
20	R0731 020 00	R0731 220 40	R0731 220 45	0.075
25	R0731 025 00	R0731 225 40	R0731 225 45	0.160
30	R0731 030 00	R0731 230 40	R0731 230 45	0.250
40	R0731 040 00	R0731 240 40	R0731 240 45	0.500
50	R0731 050 00	R0731 250 40	R0731 250 45	0.900

			Dir	nensio	ns [mm	n]				No. of ball		Angle	Angle Radial clearance [µm]				Load capacity ¹⁾ [N]		
Ød	D	С	C ₁	C_2	D ₁	S ₃	K_2	K ₃	Е		cuits	α		Shaft	/bore				
		h13	H13			+0.1				\bigcirc	()	[°]	h7/H7	h7/JS7	h6/JS6	h6/K6	dyn. C	stat. C ₀	
20	32	45	31.2	1.6	30.5	2.6	1.3	14.7	9.5	10	8	60	+49	+37	+28	+23	3530	2530	
													+13	0	+1	-4			
25	40	58	43.7	1.85	38.5	2.6	2	18.5	12	10	8	60	+49	+37	+28	+23	6190	4530	
													+13	0	+1	-4			
30	47	68	51.7	1.85	44.5	3.6	7	21	12.8	12	10	60	+49	+37	+28	+23	8800	7180	
													+13	0	+1	-4			
40	62	80	60.3	2.15	59	3.6	9.5	27.5	16.8	12	10	60	+57	+42	+31	+25	13500	10400	
													+14	-1	+1	-4			
50	75	100	77.3	2.65	72	4.6	10	33.5	22.1	12	10	60	+57	+42	+31	+25	22300	16800	
													+14	-1	+1	-4			

¹⁾ The figures given for load capacity are maximum values as the position and load direction can be precisely defined.

The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the 'C' figures in the table must be multiplied by a factor of 1.26.

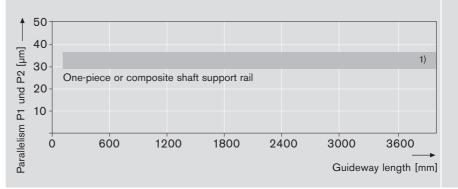



Linear Sets with Super Linear Bushings
 or

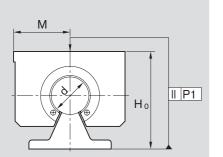
Technical Data

Tolerances, parallelism of guideway in service

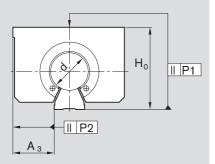
Linear sets R1703, R1704 with shaft support rail R1014 and shaft.



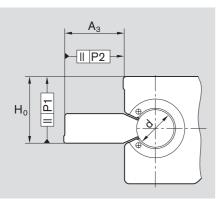
support rail R1016 and shaft.


Linear sets R1703, R1704 with shaft

Linear sets R1706 with shaft support rail R1015 and shaft



1) For precise values see "Tolerances" table


2) Composite shaft support rail made up of several sections of the same grade

	Tolerance	d [mm]]		
	zone of shaft	20	30	40	60
		25		50	
Dimension H ₀ ^{3) 6)}	h6	+18	+18	+18	+18
		-39	-39	-42	-45
	h7	+18	+18	+18	+18
		-47	-47	-51	-56
Parallelism P1 ^{4) 6)}	h6	30	30	32	33
	h7	32	32	35	35
	Ū	$\frac{\text{zone of shaft}}{\text{Dimension H}_0^{3) 6}} \qquad \qquad$	$\begin{array}{c c} \mbox{zone of shaft} & 20 \\ \mbox{25} \\ \mbox{Dimension H}_0^{(3)(6)} & h6 & +18 \\ & -39 \\ \hline & h7 & +18 \\ & -47 \\ \hline & Parallelism P1^{4)(6)} & h6 & 30 \\ \end{array}$	$\begin{array}{c c} \mbox{zone of shaft} & 20 & 30 \\ 25 & & & \\ \mbox{Dimension H_0^{3}}^{6} & & & & \\ \mbox{h6} & & +18 & +18 \\ & -39 & -39 & & \\ \mbox{h7} & +18 & +18 \\ & -47 & -47 & & \\ \mbox{Parallelism $P1^{4}$}^{6} & & & & & \\ \mbox{h6} & 30 & 30 & & \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

		Tolerance		Sh	naftØ d	[mm]	
		zone of shaft	20	25	30	40	50
	Dimension H ₀ ³⁾	h6	+28	+28	+28	+28	+28
	Several support rails		-69	-69	-69	-72	-72
		h7	+28	+28	+28	+28	+28
			-77	-77	-77	-81	-81
	Dimension H ₀ ³⁾	h6	57	57	57	60	60
	Single support rail	h7	65	65	65	67	69
[mŋ]	Parallelism P1 ⁴⁾	h6	30	30	30	32	32
<u>h</u>	Support rails in a row	h7	32	32	32	35	35
3S ⁵⁾	Parallelism P1 ⁴⁾	h6	20	20	20	22	22
Tolerances ⁵⁾	Single support rail	h7	22	22	22	25	25
lera	Parallelism P2 ⁴⁾	h6	45	45	45	46	46
Tol	Support rails in a row	h7	46	46	46	48	48
	Parallelism P24)	h6	15	15	15	16	16
	Single support rail	h7	16	16	16	18	18
	Dimension A ₃ ³⁾	h6	+30	+30	+30	+30	+30
			-37	-37	-37	-38	-38
		h7	+30	+30	+30	+30	+30
			-41	-41	-41	-43	-43

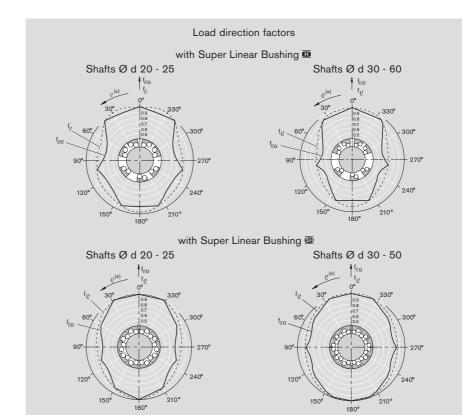
		Tolerance		Sh	aftØ d	[mm]	
		zone of shaft	20	25	30	40	50
	Dimension H ₀ ^{3) 6)}	h6	+20	+20	+20	+20	+20
			-35	-35	-35	-36	-36
		h7	+20	+20	+20	+20	+20
[mu]			-39	-39	-39	-41	-41
	Dimension A ₃ ³⁾	h6	+20	+20	+20	+21	+21
Tolerances ⁵⁾			-33	-33	-33	-37	-37
in ci		h7	+20	+20	+20	+21	+21
era			-41	-41	-41	-46	-46
To	Parallelism P1 ^{4) 6)}	h6	29	29	29	30	30
		h7	30	30	30	32	32
	Parallelism P2 ^{4) 6)}	h6	29	29	29	34	34
		h7	31	31	31	37	37

³⁾ Measured at center of housing

⁴⁾ When screwed to base mounting surface

 $^{\rm 5)}$ Tolerances valid for set with shaft and shaft support rail

⁶⁾ Shaft support single, several or in a row

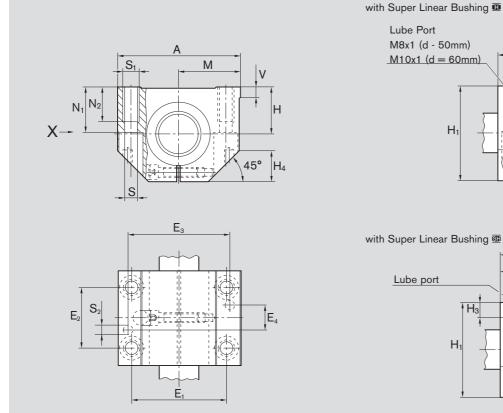

Linear sets, R1701 closed type

Linear sets, R1702 adjustable

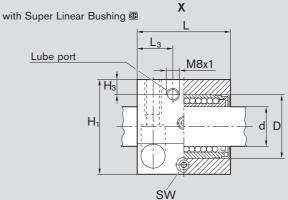
Structural design

- Precision Housing (Aluminum)
- Super Linear Bushing 💷 or 🕮
- · Self-adjusting to 30'
- · Fully sealed
- Retention by means of a screw
- Easy re-lubrication

For precise values for the 4 main directions of load see "Technical Data – Load capacity factors".



Shaft	Part n	Mass [kg]					
Ød	with Super L	with Super Linear Bushing					
[mm]	Ō	<u>S1</u>	Ō	SI			
20	R1701 220 20	R1701 420 20	0.29	0.31			
25	R1701 225 20	R1701 425 20	0.58	0.63			
30	R1701 230 20	R1701 430 20	0.88	0.97			
40	R1701 240 20	R1701 440 20	1.63	1.86			
50	R1701 250 20	R1701 450 20	2.70	3.10			
60	R1701 260 20	-	5.20	-			


adjustable

Shaft	Part	numbers	Mass [kg]					
Ød	with Super	with Super Linear Bushing						
[mm]	Ō	<u>S1</u>	Ō	SI				
20	R1702 220 20	R1702 420 20	0.29	0.31				
25	R1702 225 20	R1702 425 20	0.58	0.63				
30	R1702 230 20	R1702 430 20	0.88	0.97				
40	R1702 240 20	R1702 440 20	1.63	1.86				
50	R1702 250 20	R1702 450 20	2.70	3.10				
60	R1702 260 20	-	5.20	-				

	-	
ort	Х	
d - 50mm)	1	
(d = 60 mm)		
4		
H1		- → d D
		•
ł		
	SŴ	

	Dimensions [mm]																			
Ød	D	H ¹⁾	H ₁	M ¹⁾	А	L	E ₁	E ₂	Ε ₃	E_4	S	S ₁	S_2	N ₁	N_2	Η ₃	L ₃	V	SW	H_4
		+0.008		±0.01																
		-0.016																		
20	32	25	50	30	60	46	45±0.15	32±0.15	50	15	6.6	M8	5	24	18	10	16	5	4	16
25	40	30	60	39	78	59	60±0.15	40±0.15	64	17	8.4	M10	6	29	22	10	21	6.5	5	20
30	47	35	70	43.5	87	69	68±0.15	45±0.15	72	20	8.4	M10	6	34	22	11.5	26	8	5	22
40	62	45	90	54	108	81	86±0.15	58±0.15	90	25	10.5	M12	8	44	26	14	30	10	6	28
50	75	50	105	66	132	101	108±0.20	50±0.20	108	85	13.5	M16	10	49	34	12.5	39	12	8	37
60	90	60	125	82	164	126	132±0.20	65±0.20	132	108	17.5	M20	12	59	42	-	-	13	10	45

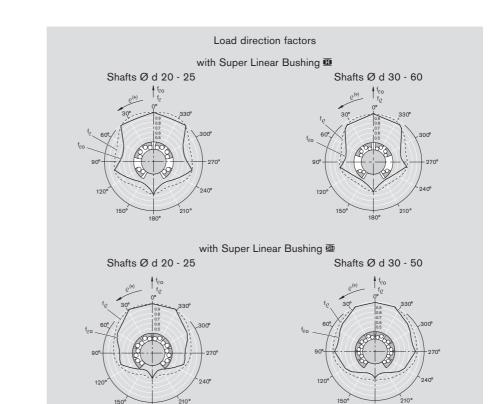
Shaft	Ra	dial cleara	nce ²⁾ [µm]	Load capacity ³⁾ [N]								
Ød	R17	01	R1702	R1702 with Super Line								
	Sha	aft		Œ	į	<u>8</u>						
[mm]	h6	h7		dyn. C	stat. C ₀	dyn. C	stat. C ₀					
20	+43	+49		2520	1880	3530	2530					
	+11	+13	e on h5 delivery									
25	+43	+49	on eliv	4430	3360	6190	4530					
	+11	+13	to d									
30	+43	+49	urar or t	6300	5230	8800	7180					
	+11	+13	clearance prior to d									
40	+50	+57	jit) o	9680	7600	13500	10400					
	+12	+14	zero r limit)									
50	+50	+57	ted to zero (lower limit)	16000	12200	22300	16800					
	+12 +14		stec (Io									
60	+56	+65	adjusted to shaft (lower	23500	18700	-	-					
	+14	+16	stac									

- ¹⁾ When screwed down, relative to shaft nominal dimension d.
- ²⁾ When screwed down.
- ³⁾ Caution:

Reduction in load capacity due to load direction (see "Technical Data"). The figures given for load capacity are maximum values as the position and load direction can be precisely defined.

The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the 'C' figures in the table must be multiplied by a factor of 1.26.

180°

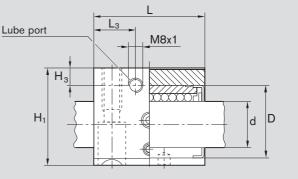

Linear sets, R1703 open

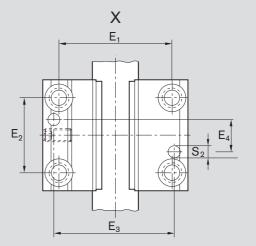
Linear sets, R1704 open, adjustable

Structural design

- Precision Housing (Aluminum)
- Super Linear Bushing
 or
- · Self-adjusting to 30'
- Fully sealed
- Retention by means of a screw
- · Easy re-lubrication

For precise values for the 4 main directions of load see "Technical Data – Load capacity factors".


Shaft	Par	t numbers	Mass [kg]					
Ød	with Supe	with Super Li	near Bushing					
[mm]	Ō	<u>S</u>	Ō	SI				
20	R1703 220 70	R1703 420 70	0.24	0.26				
25	R1703 225 70	R1703 425 70	0.48	0.51				
30	R1703 230 70	R1703 430 70	0.72	0.79				
40	R1703 240 70	R1703 440 70	1.38	1.56				
50	R1703 250 70	R1703 450 70	2.30	2.60				
60	R1703 260 70	-	4.40	-				


180

Shaft	Pa	t numbers	Mass	Mass [kg]				
Ød	with Supe	with Super L	inear Bushing					
[mm]	Ō	<u>S</u>	Ō	<u>S</u>				
20	R1704 220 70	R1704 420 70	0.24	0.26				
25	R1704 225 70	R1704 425 70	0.48	0.51				
30	R1704 230 70	R1704 430 70	0.72	0.79				
40	R1704 240 70	R1704 440 70	1.38	1.56				
50	R1704 250 70	R1704 450 70	2.30	2.60				
60	R1704 260 70	-	4.40	-				

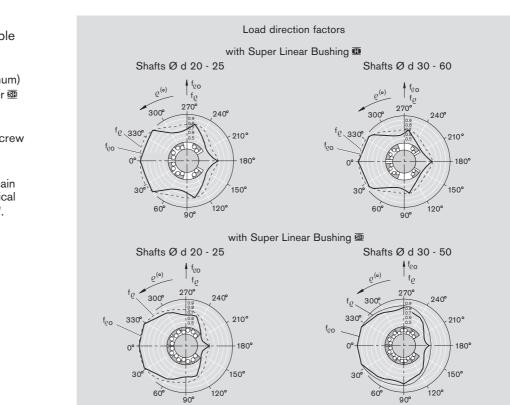
								Dim	ensior	ns (mn	n]										
Ød	D	H ¹⁾	H_1	M ¹⁾	Α	L	E ₁	E ₂	E3	E_4	S	S ₁	S_2	N_1	N_2	Η ₃	L ₃	V	SW	W	H_4
	+	-0.008		±0.01																	
		-0.016																			
20	32	25	42	30	60	46	45±0.15	32±0.15	50	15	6.6	M8	5	24	18	10	16	5	2.5	9.5	3.5
25	40	30	51	39	78	59	60±0.15	40±0.15	64	17	8.4	M10	6	29	22	10	21	6.5	3	12	4
30	47	35	60	43.5	87	69	68±0.15	45±0.15	72	20	8.4	M10	6	34	22	11.5	26	8	3	12.8	6
40	62	45	77	54	108	81	86±0.15	58±0.15	90	25	10.5	M12	8	44	26	14	30	10	4	16.8	6
50	75	50	88	66	132	101	108±0.20	50±0.20	108	85	13.5	M16	10	49	34	12.5	39	12	5	22.1	6
60	90	60	105	82	164	126	132±0.20	65±0.20	132	108	17.5	M20	12	59	42	15	50	13	6	27	5

Shaft	Angle	Radial clearance ²⁾ [µm] Load capacity ³⁾ [N]							
Ød	α	R17	703	R1704	wit	ng			
		Sh	aft		Œ	i	<u>8</u>		
[mm]	[°]	h6	h7		dyn. C	stat. C ₀	dyn. C	stat. C ₀	
20	54	+31	+37		2520	1880	3530	2530	
		-2	0	ت تر					
25	55	+31	+37	on h5 elivery	4430	3360	6190	4530	
		-2	0						
30	60	+31	+37	clearance on h5 prior to delivery	6300	5230	8800	7180	
		-2	0	ear orio					
40	60	+35	+42	it) p	9680	7600	13500	10400	
		-3	-1	zero Iimit					
50	52	+35	+42	ver	16000	12200	22300	16800	
		-3	-1	lov (lov					
60	55	+39	+47	adjusted to zero c shaft (lower limit)	23500	18700	-	-	
		-4	-1	sh					

- ¹⁾ When screwed down, relative to shaft nominal dimension d.
- ²⁾ When screwed down.
- ³⁾ Caution:

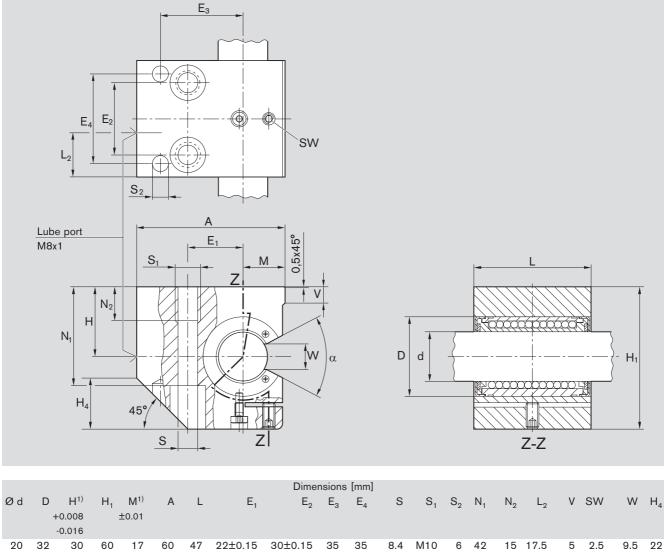
Reduction in load capacity due to load direction (see "Technical Data"). The figures given for load capacity are valid for the main direction of load $\rho = 0^{\circ}$.

The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the 'C' figures in the table must be multiplied by a factor of 1.26.


Linear Sets with Super Linear Bushings or

Linear sets, R1706 with side opening, adjustable

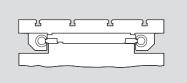
Structural design


- Precision Housing (Aluminum)
- Super Linear Bushing
 or
- · Self-adjusting to 30'
- Fully sealed
- · Retention by means of a screw
- Easy re-lubrication

For precise values for the 4 main directions of load see "Technical Data – Load capacity factors".

Shaft	Part	Mass [kg]			
Ød	with Super	with Super Linear Bushing			
[mm]	Ō	<u> </u>	Ō	8	
20	R1706 220 70	R1706 420 70	0.35	0.37	
25	R1706 225 70	R1706 425 70	0.70	0.73	
30	R1706 230 70	R1706 430 70	1.03	1.10	
40	R1706 240 70	R1706 440 70	1.80	1.95	
50	R1706 250 70	R1706 450 70	3.00	3.25	

20	32	30	60	17	60	47	22±0.15	30±0.15	35	35	8.4	M10	6	42	15	17.5	5	2.5	9.5	22
25	40	35	72	21	75	59	28±0.15	36±0.15	42	45	10.5	M12	8	50	18	22	6.5	3	12	26
30	47	40	82	25	86	69	34±0.15	42±0.15	52	52	13.5	M16	10	55	24	27	8	3	12.8	30
40	62	45	100	32	110	81	43±0.15	48±0.15	65	60	15.5	M20	12	67	30	31	10	4	16.8	38
50	75	50	115	38	127	101	50±0.15	62±0.15	75	75	17.5	M20	12	78	30	39	12	5	22.1	45


Shaft Ø d	Angle α	Radial clearance ²⁾ [µm]	Load capacity ³⁾ [N] with Super Linear Bushing				
			đ	i	<u>8</u>		
[mm]	[°]		dyn. C	stat. C ₀	dyn. C	stat. C ₀	
20	54	adjusted to zero clearance on h5 shaft (lower limit) prior to delivery	2520	1880	3530	2530	
25	55		4430	3360	6190	4530	
30	60		6300	5230	8800	7180	
40	60		9680	7600	13500	10400	
50	52		16000	12200	22300	16800	

¹⁾ When screwed down, relative to shaft nominal dimension d.

²⁾ When screwed down.

³⁾ Caution:

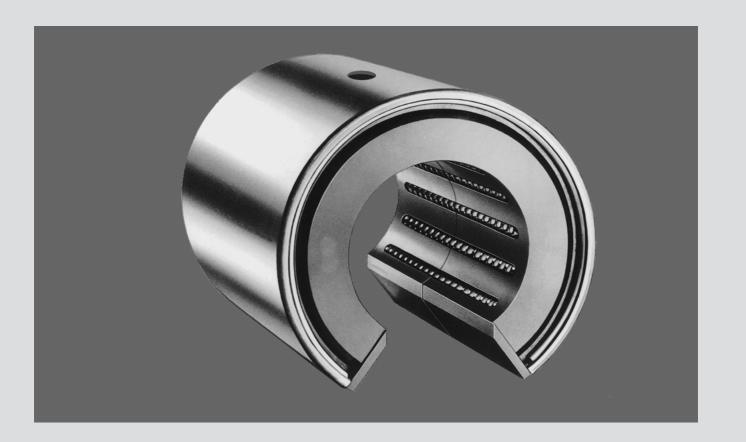
Reduction in load capacity due to load direction (see "Technical Data"). The figures given for load capacity are valid for the main direction of load $\rho = 0^{\circ}$.

The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the 'C' figures in the table must be multiplied by a factor of 1.26.

Radial Linear Bushings, Radial Compact sets

The advantages

- High precision Linear Bushing for very high load capacity
- Radial ball return for especially high number of bearing rows and highest capacity
- Higher rigidity
- Quieter operation
- Fully sealed or without seals
- Heavy load guidance with a degree of freedom in circumferential direction
- For applications where inexact substructures could lead to preload variations
- Linear sets with steel housing
- Radial Compact sets for very compact construction


Radial Linear Bushings

Radial Compact set open type

Radial Compact set open, adjustable

Radial Linear Bushings

Technical Data

Please observe the general technical principles and mounting instructions at the beginning of this catalog as well as the additional technical data given below.

Sealing

Radial Linear Bushings can be supplied

2 m/s

 $= 50 \text{ m/s}^2$

- fully sealed with internal wiper-type seals and axial seal strip, or
- with separate seals specially designed for use with Radial Linear Bushings.

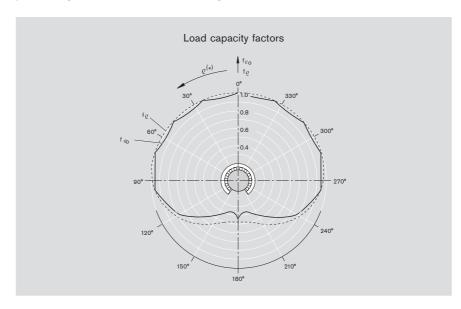
Friction

The coefficient of friction μ of unsealed Radial Linear Bushings lies between 0.001 and 0.002. This low friction coefficient makes it possible to move heavy loads with a minimum of power consumption.

Radial Linear Bushings with separate seals or fully sealed achieve the following friction ratings:

Shaft	Separat	e Seals	Fully Sealed			
Ød	Breakaway force	Frictional drag	Breakaway force	Frictional drag		
[mm]	[N] ca.	[N] ca.	[N] ca.	[N] ca.		
30	24	8	24	12		
40	32	11	32	16		
50	40	14	40	20		
60	48	16	48	24		
80	60	20	60	30		

Velocity


Acceleration

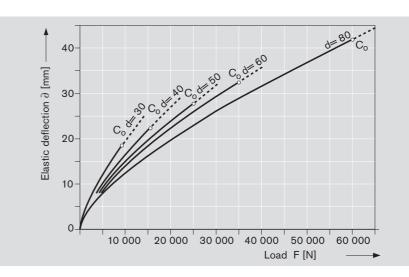
Operating Temperature

Direction of load and its influence on the load capacity

-20 °C to 100 °C separate Seals -20 °C to 80 °C, brief peaks up to 100 °C

The load capacity ratings C and C₀ given for Radial Linear Bushings apply when the load is acting along the line $\varrho = 0^{\circ}$. If the external load acts at an angle $\varrho = 90^{\circ}$ to 270°, allowance must be made for a reduction in load capacity by multiplying the load capacities C and C₀ by the load capacity factors f_e and f_{e0}. The reduction in the load capacity can be minimized by selective circumferential positioning of the Radial Linear Bushings.

Rigidity


Rigidity of the Radial

Linear Bushings

When used in conjunction with a continuously supported guide shaft Radial Linear Bushings constitute extremely accurate linear motion assemblies with a minimum of elastic deflection.

The chart below shows the elastic deflection of Radial Linear Bushings as a function of the load. The chart applies for installation under the following conditions:no preload

- zero clearance (no preload)
- for loads acting at angles of $\varrho = 0^{\circ}$ to 90° and 270° to 360°.

Mounting with preload reduces the elastic deflection. The additional elastic deflection of all other elements in the assembly (housing, shafts, shaft support rails) depends on the direction in which the load is acting.

Guide values for total elastic deflection: with elements R1075-/R1076 and R1018: Load direction factor multiplied by the elastic deflection ∂ (see chart above).

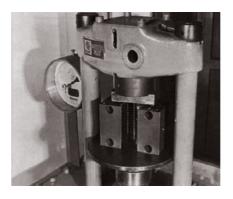
Load direction ∂	0°	90°	180°	270°	-
Elastic deflection	1 · ∂	1.8 · ∂	3.5 · ∂	1.8 · ∂	- 0

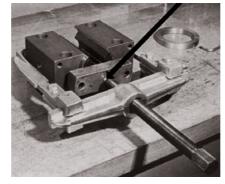
Radial Linear Bushings

Assembly, Retention

Installation, retention	For maximum rigidity, Radial Linear Bushings must be installed on continuously supported shafts. Our Linear Motion product range includes steel shaft support rails in standard lengths of 600 mm. The Radial Bushings must be inserted into the housings as described in the mounting procedure. In applications where vibration or high acceleration rates are to be anticipated, and in particular for vertical installations, use of some additional means of retention is recommended. The following assembly sequence should always be observed: first bolt the shafts to the shaft supports, then align the housings with the Radial Linear Bushings on the shafts, and only then bolt the assembly to the table.
Recommended tolerances	The tolerances for the housing bore can be taken from the table for Radial Linear Bushings. The housing may have a slot and adjusting screw at one side for esta- blishing the desired clearance or preload. Radial Linear Bushings are also available as part of Linear Sets complete with matching housing. For details on permissible parallelism offset, please refer to the "General Technical Data and Mounting Instructions" at the beginning of this catalog.
Lubricating instructions	Lubricate only with shaft inserted; add lubricant until excess emerges. To prevent damage to the assembly during installation, it is essential that Radial
Procedure for mounting Radial Linear Bushings	Linear Bushings be inserted into the housing with the aid of a press or bearing extractor. The following instructions and illustrations should be observed during installation. The outer sleeve of the Radial Linear Bushing and the surface of the mounting bore

The outer sleeve of the Radial Linear Bushing and the surface of the mounting bore in the housing must be free from all oil residue before commencement of installation.


Slip a slotted mounting ring (order number 0940-0..-00) over the linear bushing as shown and reduce the outside diameter of the linear bushing by tightening the adjust-ing screw until it can easily be peared into the housing bore by hand. The bore of the mounting ring must be about 0.5 mm larger than the outside diameter D of the Radial


Linear Bushing.

After pushing the Radial Linear Bushing into the housing, but before loosening the mounting ring, match up the opening of the Radial Linear Bushing with the opening in the housing. The mounting ring can now be loosened.

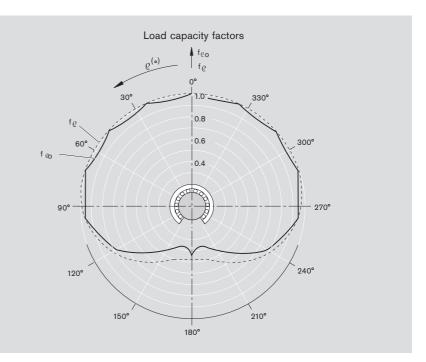
¹⁾ Part number assembly ring: R0940 0.. 00 T_____ Shaft diameter

Use a press to push the pre-aligned Radial Linear Bushing firmly into the housing.

Alternatively, the pre-aligned Radial Linear Bushing can be pushed into the housing with the aid of a bearing extractor. In this case, the extractor spindle must be joined to the pressure plate via a ball bearing (see arrow). Otherwise, a separate thrust bearing must be provided in front of the extractor spindle to prevent the Radial Linear Bushing from being turned in the housing by torque exerted by the bearing extractor.

Notes

- If the openings of the Radial Linear Bushing and the housing do not match up when the linear bushing is mounted:
 - push out the Radial Linear Bushing (by means of the press or bearing extractor)
 - fit the mounting ring
 - correct the position of the linear bushing opening
 - continue the installation according to the photos and instructions above.
- The ends of the shaft must be chamfered.
- The Radial Linear Bushing must not be allowed to tilt while being pushed onto the shaft.
- Relative rotation between the shaft and the Radial Linear Bushing should be avoided.
- If external seals are used, these must be aligned with the Radial Linear Bushing and inserted by means of a press or bearing extractor.

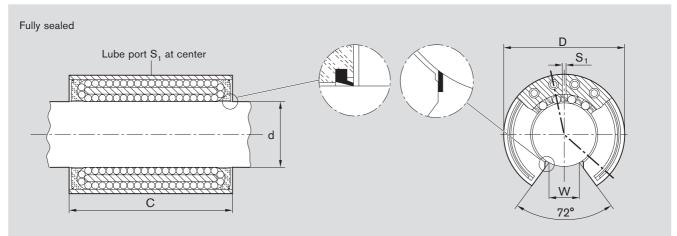


Radial Linear Bushings

Radial Linear Bushings, R0678 without seal or fully sealed

Structural Design

- Hardened and ground steel sleeve
- · Reinforced polyamide ball retainer
- Balls made of anti-friction bearing steel
- Two snap rings
- Without seals
- · Fully sealed
- Separate Seals



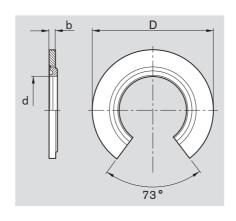
Shaft	Part nu	Mass	
Ød	without seal	fully sealed	
[mm]			[kg]
30	R0678 030 00	R0678 230 45	0.7
40	R0678 040 00	R0678 240 45	1.4
50	R0678 050 00	R0678 250 45	2.5
60	R0678 060 00	R0678 260 45	4.9
80	R0678 080 00	R0678 280 45	10.4

Shaft Ø d	Part numbers Seals	Mass
[mm]		[kg]
30	R1331 930 00	0,050
40	R1331 940 00	0,075
50	R1331 950 00	0,145
60	R1331 960 00	0,230
80	R1331 980 00	0,400

		Dimensio	ns [mm]		No. of ball	Radi	al clearance	[µm]	Load capacities ³⁾ [N]		
Ød	D	C h11	W ¹⁾	S ₁	circuits	h6/H6	h6/JS6 ²⁾	h6/K6 ²⁾	dyn. C	stat. C ₀	
30	60	75	14	3	12	+21 -10	+12 -20	+6 -25	8500	9520	
40	75	100	19,5	3	12	+23 -13	+13 -22	+8 -28	13900	16000	
50	90	125	24,5	3	12	+25 -12	+14 -23	+7 -30	20800	24400	
60	110	150	29	4	12	+26 -15	+15 -26	+8 -33	29500	34100	
80	145	200	39	4	12	+29 -15	+16 -27	+8 -36	54800	61500	

¹⁾ Caution: travel life may be shortened by excessive preload (see tables TB-06-052-05 and -06).

²⁾ Lower limit relative to shaft diameter d.


 $^{\scriptscriptstyle 3)}$ The stated load capacities apply when the load is acting along the line \mathcal{Q} = 0°.

The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the "C" figures in the table must be multiplied by a factor of 1.26.

Seals

Structural design

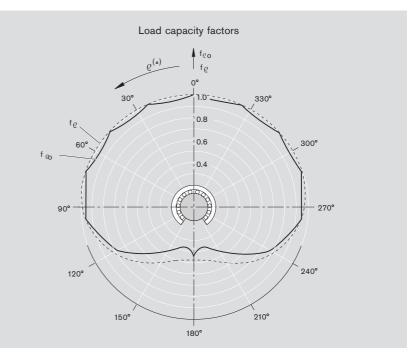
- Metal case
- Elastomer seal

	Dimensions [mm]	
Ød	D ⁴⁾	b
30	60	5
40	75	5
50	90	7
60	110	7
80	145	7

_

⁴⁾ Outer diameter D is about 0.1 mm oversized. No retaining elements required except for applications subject to vibration or high acceleration.

Linear sets with Radial Linear Bushings

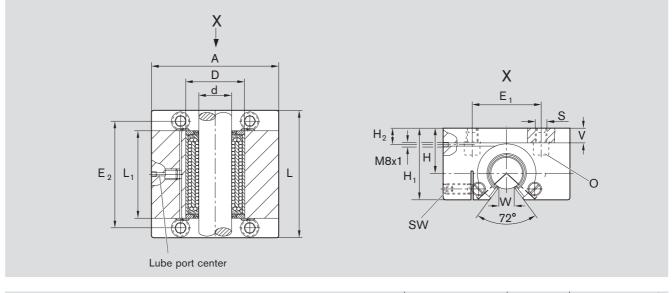

Linear Sets, R1075 open type

Linear Sets, R1076 open type, adjustable

Structural Design

- Precision Housing (spheroidal graphite cast iron)
- Radial Linear Bushing
- Two seals
- · Easy re-lubrication

Combined with Precision Steel Shafts and Shaft Support Rails, these Linear Sets provide linear motion assemblies of exceptional rigidity and with a high load-carrying capacity.



Shaft	Part numbers	Mass
Ød	with two seals	
[mm]		[kg]
30	R1075 230 20	6.1
40	R1075 240 20	11.8
50	R1075 250 20	19.7
60	R1075 260 20	38.4
80	R1075 280 20	76.1

open type, adjustable

Shaft	Part numbers	Mass
Ød	with two seals	
[mm]		[kg]
30	R1076 230 20	6,1
40	R1076 240 20	11,8
50	R1076 250 20	19,7
60	R1076 260 20	38,4
80	R1076 280 20	76,1

					Din	nensio	ons [m	m]							Radial cl	earance	Tolerance	Load cap	acities ⁵⁾
															[µn	n]	[µm] for	[N]	
Ød	D	A ¹⁾	L ¹⁾	L ₁	Н	$H_{1}^{(1)}$	H_2	V ¹⁾	E ₁	E_2	S	W ²⁾	O ³⁾	SW	R1075	R1076	dimension	dyn. C	stat. C ₀
				+0,5					±0,5	±0,5	H13				Shaft h6		H ⁴⁾		
30	60	140	130	84	48	75	18	16	75	108	11	14	M10x30	5	+21	l	+15	8500	9520
															-10	uo	-5		
40	75	170	160	109	60	94	22,5	20	90	135	13,5	19,5	M12x40	6	+23	nce o to	+17	13900	16000
															-13	clearance iit) prio to	-4		
50	90	200	200	138	70	110	25	23	110	170	17,5	24,5	M16x50	8	+25		+18	20800	24400
															-12	zero cle er limit)	-5		
60	110	240	240	163	85	135	30	28	130	200	22	29	M20x60	10	+26		+23	29500	34100
															-15	aft (ry	-4		
80	145	310	310	213	110	175	37,5	35	170	260	26	39	M24x80	12	+29	aadjusted to h5 shaft (low delivery	+22	54800	61500
															-15	aa h5 del	-5		

¹⁾ Hex. socket head cap screws to ISO 4762-8.8. Applies only to fixing in tapped bores in steel or cast iron.

²⁾ When screwed down, relative to shaft nominal dimension d.

³⁾ Tolerance to DIN 1685-GTB 16.

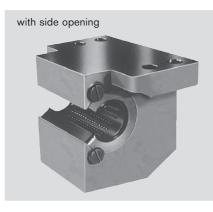
 $^{\scriptscriptstyle 4)}$ Lower limit relative to shaft nominal diameter d.

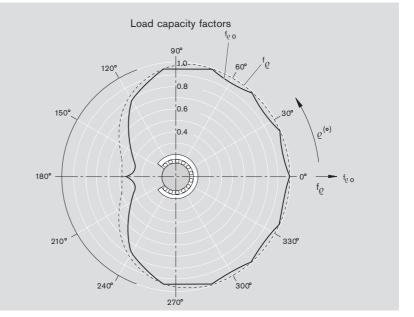
⁵⁾ The stated load capacities apply when the load is acting along the line $Q = 0^{\circ}$.

The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the "C" figures in the table must be multiplied by a factor of 1.26.

Linear sets with Radial Linear Bushings

Linear Sets, R1077 with side opening

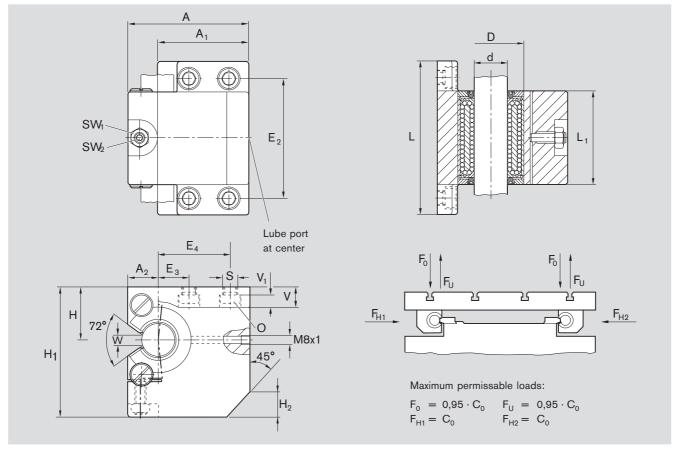

Linear Sets, R1078 with side opening, adjustable


Structural Design

- Precision Housing with side opening (spheroidal graphite cast iron)
- Radial Linear Bushing
- · Two seals
- · Easy re-lubrication

The load carrying capacity of open linear bushings is considerably reduced when the load is applied to the "open" portion of the bushing.

This Linear Set has been developed to allow lateral installation of the Radial Linear Bushing and thus full utilization of the high load capacity rating.



Shaft Ø d	Part numbers with two seals	Mass
[mm]		[kg]
30	R1077 230 20	7.8
40	R1077 240 20	15
50	R1077 250 20	27.5
60	R1077 260 20	48
80	R1077 280 20	105

with side opening, adjustable

Shaft Ø d	Part numbers with two seals	Mass
[mm]		[kg]
30	R1078 230 20	7.8
40	R1078 240 20	15
50	R1078 250 20	27.5
60	R1078 260 20	48
80	R1078 280 20	105

Dimensions [mm]																			
Ød	D	A ¹⁾	A ₁ ¹⁾	A ₂ ¹⁾	L ¹⁾	L ₁	$H_{2}^{(1)}$	Н	H ₁ ¹⁾	V ¹⁾	V ₁	E_2	Ε ₃	E_4	S	W ²⁾	SW_1	SW_2	O ³⁾
						+0,5													
30	60	110	83	27	140	84	30	48	118	18	11	110	28	65	13.5	14	17	5	M12x30
40	75	135	100	35	180	109	35	60	145	25	15	142	40	76	17.5	19.5	19	6	M16x40
50	90	165	125	40	230	138	45	70	170	30	17.5	180	50	95	22	24.5	24	8	M20x50
60	110	200	150	50	275	163	55	85	205	35	20.5	215	60	115	26	29	30	10	M24x60
80	145	265	200	65	345	213	70	110	265	45	25.5	275	75	155	33	39	36	12	M30x80

The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the 'C' figures in the table must be multiplied by a factor of 1.26.

Shaft	Radial cleara	ance [µm]	Tolerance for	Load capacities ⁵⁾ [N]			
Ød	R1077	R1078	dimension H ⁴⁾				
[mm]	Shaft h6		[µm]	dyn. C	stat. C ₀		
30	+21	rc ∑	+15	8500	9520		
	-10	adjusted to zero clearance on h5 shaft (lower limit) prior to delivery	-5				
40	+23	o de	+17	13900	16000		
	-13	arar ior t	-4				
50	+25	cle;) pr	+18	20800	24400		
	-12	ero	-5				
60	+26	to z /er l	+23	29500	34100		
	-15	ted (low	-4				
80	aft +29 aft		+22	54800	61500		
	-15	shac	-5				

¹⁾ Tolerance to DIN 1685-GTB 16

- ²⁾ Hex. socket head cap screws to DIN 6912-8.8. Applies only for fixing in tapped bores in steel or cast iron.
- ³⁾ When screwed down, relative to shaft nominal dimension d.
- $^{\rm 4)}$ The load capacities apply when the load is acting along the line shown by the arrows at $F_{\rm H1}$ or $F_{\rm H2}.$

Radial Compact sets

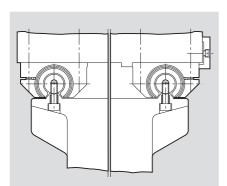
Technical Data/Mounting

Friction, Velocity,

The values given for Radial Linear Bushing may be used for design purposes.

Acceleration, Operating temperature and dirction of load and its influence on the load capcity and rigidity.

Frictional drag for seals without radial loading

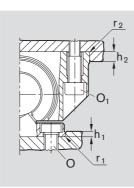

Breakaway force	Frictional drag
[N] approx.	[N] approx.
24	12
32	16
40	20
48	24
60	30
	[N] approx. 24 32 40 48

Mounting procedure

Prior to installation

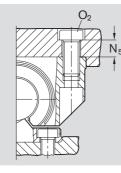
Check the flatness of the base on which the Radial Compact Set is to be mounted, as irregularities will affect the radial clearance. The shaft ends must be chamfered. Take care not to tilt the Radial Compact Sets while pushing them onto the shaft.

With Shaft Support Rails see Chapter on "Shaft Support Rails".


Shaft Support Rails cut to fit the machine base (low overall height)

- Fabricate the shaft support rails to the specified parallelism (see section on "Parallelism, General Technical Data and Mounting Instructions")
- Screw on the shafts
- Mount the Radial Compact Sets (see Chapter "Shaft Support Rails"). Alternatively, the Radial Compact Sets may be installed according to the Chapter "Shaft Support Rails"

Recommended mounting screws for installation of shaft


Ø d [mm]	ISO 4762-8.8
30	M10x30
40	M12x40
50	M16x50
60	M20x60
80	M24x80

Edge radii, fitting edges and screws

	Tightening							
							tor	que
							[N	m]
Ød	r ₁	h ₁	r ₂	h_2	0	0 ₁	0	O ₁
	max		max		DIN 7984-8.8	ISO 4762-8.8		
30	0,6	6	0,6	6	M10x20	M10x40	32	46
40	0,6	6	0,6	6	M12x25	M12x45	56	80
50	1,2	8	0,6	8	M16x30	M16x60	136	195
60	1,2	8	0,6	16	M20x40	M20x80	270	385
80	1,2	10	0,6	20	M24x50	M24x100	460	660

Mounting of Radial Compact sets from below

	Dimensions [mm]	Tightening
Ød	N ₅	O ₂	torque
		ISO 4762-8.8	[Nm]
30	17	M12x30	55
40	24	M16x40	100
50	28	M20x50	240
60	30	M27x60	500
80	45	M30x80	800

Locating pins

Radial clearance

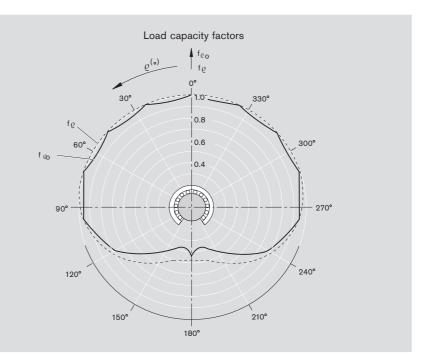
Ød [mm]	Tapered pin (hardened) or cylindrical pin
30	8x60
40	10x80
50	12x100
60	14x120
80	16x160

Adjustable Radial Compact Sets are adjusted to zero clearance on a shaft of diameter accurate to a tolerance of h5 (lower limit) prior to delivery.

- If a preload is required, the procedure is as follows: • Measure the diameter of the guide shaft.
- Choose a dummy shaft whose diameter is smaller by the amount of the desired preload than the actual guide shaft and insert it.
- Reduce the clearance using the adjusting screw until a slight resistance is felt when the dummy shaft is turned.

Lubricate only with shaft inserted; add lubricant until excess emerges.

Lubrication instructions

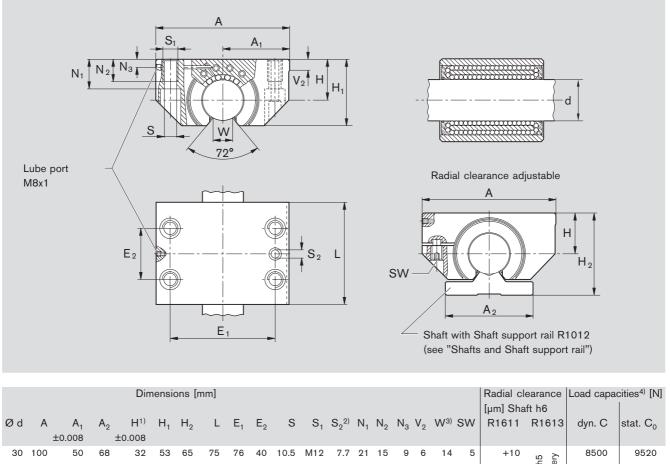

Radial Compact sets

Radial-Compact sets, R1611 open type

Radial Compact sets, R1613 open type, adjustable

Structural Design

- Hardened and ground bearing block made of anti-friction bearing steel
- Reinforced polyamide ball retainer
- Balls made of anti-friction bearing steel
- Two snap rings
- Fully sealed (with internal wiper-type seals and seal strip)



Shaft	Part numbers	Mass
Ød		
[mm]		[kg]
30	R1611 300 00	1.75
40	R1611 400 00	3.5
50	R1611 500 00	7.1
60	R1611 600 00	11.9
80	R1611 800 00	29.6

Shaft Ø d	Part numbers	Mass
[mm]		[kg]
30	R1613 300 00	1.75
40	R1613 400 00	3.5
50	R1613 500 00	7.1
60	R1613 600 00	11.9
80	R1613 800 00	29.6

																			-6	d ng		
40	125	62.5	85	40	66	80	100	94	50	14	M16	9.7	27	18	11	6	19.5	6	+12	ce on o deli	13900	16000
																			-7	or to		
50	160	80	105	50	81.5	100	125	122	65	17.5	M20	11.7	35	24	12	8	24.5	8	+12	clea	20800	24400
																			-7	ero (mit)		
60	190	95	130	60	97	120	150	150	75	22	M27	13.7	42	32	13	16	29	10	+15	to ze er li	29500	34100
																			-9	ted 1 (low		
80	260	130	170	80	130	160	200	205	100	26	M30	15.7	57	36	15	16	39	12	+15	just aft	54800	61500
																			-9	adj sha		

¹⁾ When screwed down, relative to shaft nominal dimension d.

²⁾ Pre-drilled bores for locating pins.

³⁾ Lower limit relative to shaft nominal dimension d.

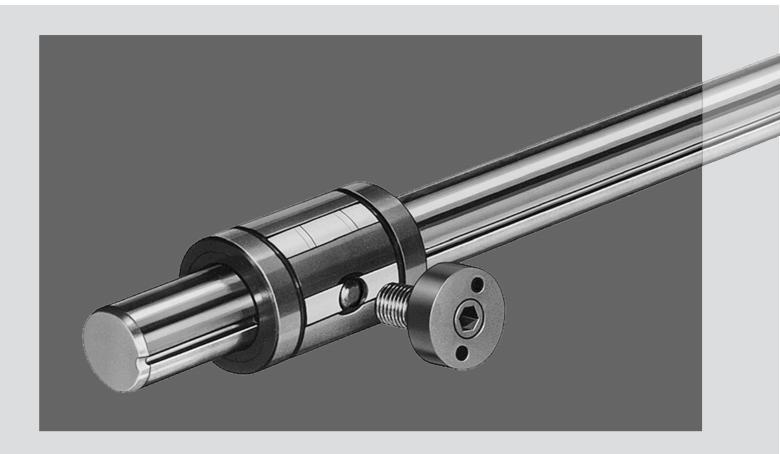
 $^{\scriptscriptstyle 4)}$ The load capacities apply when the load is acting along the line \mathcal{Q} = 0°.

The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the 'C' figures in the table must be multiplied by a factor of 1.26.

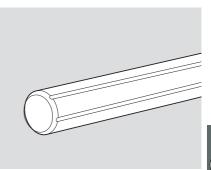
Torque-resistant Linear Bushings

The Advantages

- For axially and radially true linear motion with only one shaft
- With 1, 2 or 4 ball guide grooves for torque transfer
- Large choice of formats
- Torque-resistant Linear Bushings with adjustment screw set to zeroclearance at the factory
- Appropriate shaft profiles with ground ball guide grooves
- Shafts machined to customer specifications
- With seperate seals or without seals
- Various flange formats
- With steel or aluminum housing in various formats


Torque-resistant-Linear Bushings Type 1 with one ball guide groove

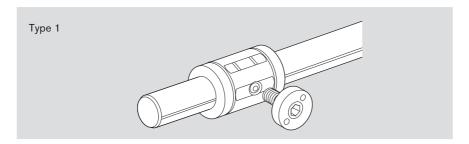
Torque-resistant Linear Bushings Type 2 with two ball guide grooves



Torque-resistant Compact Linear Bushings

Torque-resistant Linear Bushings with four ball guide grooves

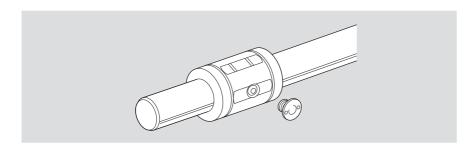
Precision steel shaft with four ball guide grooves



Torque-resistant Linear Bushings

Overview

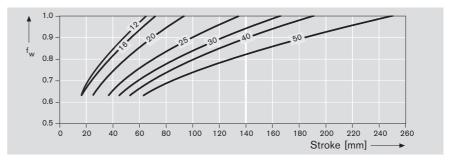
Type 2


Torque-resistant Linear Bushings

with one ball guide grooves

with two ball guide grooves

Technical Data


Please observe the general technical principles and mounting instructions at the beginning of this catalog as well as the additional technical data given below.

Operating temperature

Reduced load capacity in shortstroke applications -20 °C to 100 °C

In short-stroke applications, the service life of the shafts is shorter than that of the Torque-Resistant Linear Bushings.

For this reason, the load capacities C listed in the tables must be multiplied by the factor $f_{\ensuremath{w}}.$

Load capacity and travel life

In applications subject to superimposed radial loads and torque, the equivalent total load must first be calculated for use in the travel life calculation.

$$F = F_{R} + \frac{C \cdot M}{M_{t}}$$

$$F = \frac{C \cdot M}{M_{t}}$$

$$F = \frac{C \cdot M}{M_{t}}$$

$$F_{R} = \frac{C \cdot M}{dt}$$

$$C = \frac{dynamic load (N)}{dt}$$

$$C = \frac{dynamic load capacity}{dt}$$

$$M = torque (Nm)$$

$$M_{t} = torque (catalog rating) (Nm)$$

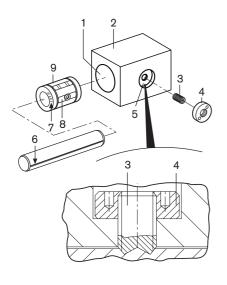
$$L = \frac{C}{T}$$

In applications subject to torque only, travel life is calculated as follows:

$$L = \left(\frac{M_{t}}{M}\right)^{3} \cdot 10^{5} \text{ m}$$
$$M = \sqrt[3]{M_{1}^{3} \cdot \frac{q_{1}}{100} + M_{2}^{3} \cdot \frac{q_{2}}{100} + \dots + M_{n}^{3} \cdot \frac{q_{n}}{100}}$$

М	=	torque (Nm)
M _t	=	torque (catalog rating) (Nm)
$M_1, M_2 \dots M_n$	=	discrete torque step (Nm)
$q_1,q_2\ldotsq_n$	=	percentage stroke covered ander $M_1,M_2\ldotsM_n$ (%)

Straightness of shaft	-	up to 1200 mm length:	0.1 mm
	-	at 2000 mm length:	0.2 mm

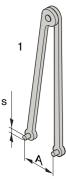

Stability against cocking loads

To ensure stability against cocking loads it is expedient to install two torqueresistant Linear Bushings. In the case of Linear Sets, we recommend the Tandem version (with two torqueresistant Linear Bushings). Torque-resistant Linear Bushings

Mounting of Torque-resistant Linear Bushings

尒

Mounting procedure


Linear Sets are ready-mounted and adjusted to zero clearance. If the shaft has been removed, it is necessary to loosen the adjusting screws and re-adjust the Torque-Resistant Linear Bushing.

- Chamfer and clean the bore (1) in the housing (2).
- Oil the adjusting screw (3).
- Check the lock nut (4) on the adjusting screw (3) for ease of movement.
- Check the adjusting screw (3) in the tapped hole (5) for ease of movement. Deburr thread runout, if necessary.
- Remove transport packing from the linear bushing.

No not drive in linear bushings with a hammer!

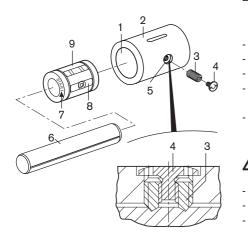
- Insert linear bushing (9) in the housing (2) by hand.
- Align countersunk steel bearing plate (8) with the tapped hole (5) in the housing.
- Align one ball guide groove (6) with the marking (7) on the identification block of the linear bushing.

Adjustment of adjusting screws

- Insert shaft, taking care not to tilt it!
- Screw in adjusting screw until it meets with initial resistance.
- Move shaft to and fro, while simultaneously attempting to turn it in both directions. Tighten adjusting screw with hex. wrench.
- For Type 1 (one ball guide groove), tighten adjusting screw to M_{GA}.
- For Type 2 (two ball guide grooves), first tighten one adjusting screw to $M_{GA}/2$, then the other to M_{GA} .
- Secure adjusting screw with lock nut. Use face wrench (1). The adjusting screw must not turn when being secured with the lock nut. Tightening torque = M_{GK} .
- After mounting, the frictional drag F_R should be as shown in the table below. If the frictional drag varies significantly, loosen and re-adjust adjusting screws!
- Do not remove shaft!

Shaft diameter	Face wr	ench (1)	Tightening to	Frictional drag F _R ca.	
	[m	m]	adjusting screw	lock screw	(one Linear Bushing)
[mm]	S	А	M _{GA}	M _{GK}	[N]
12	2,5	10	8	400	1,5
16	2,5	10	11	400	2
20	3	15	30	1500	3
25	3	15	45	1500	4,5
30	3	19,5	70	2000	6
40	3	19,5	100	2000	8
50	3	25	180	3000	12

Installation of seal


Push seal onto the shaft, aligning the lip with the groove.

- Press seal into the mounting bore.

With each installed seal the frictional drag rises higher than the value F_{R} . If two seals are installed, it increases to roughly three times the value stated in the table.

Mounting Torque-resistant Compact Linear Bushings

Mounting procedure

Adjustment of adjusting screws

Linear Sets are ready-mounted and adjusted to zero clearance. If the shaft has been removed, it is necessary to loosen the adjusting screws and re-adjust the Torque-Resistant Compact Linear Bushing.

- Chamfer and clean the bore (1) in the housing (2).
- Oil the adjusting screw (3) and lock screw (4).
- Check the lock screw (4) in the adjusting screw (3) for ease of movement.
- Check the adjusting screw (3) in the tapped hole (5) for ease of movement. Deburr thread runout, if necessary.
- Remove transport packing from the linear bushing.

Do not drive in linear bushings with a hammer!

- Insert linear bushing (9) in the housing (2) by hand.
- Align countersunk steel bearing plate (8) with the tapped hole (5) in the housing. Align one ball guide groove (6) with the marking (7) on the identification block of the linear bushing.
- Insert shaft, taking care not to tilt it!
- Screw in adjusting screw until it meets with initial resistance.
- Move shaft to and fro, while simultaneously attempting to turn it in both directions. Tighten adjusting screw with screwdriver (1).
- For shaft diameters 12 and 16, tighten adjusting screw to M_{GA}.
- For shaft diameters 20 to 50, first tighten one adjusting screw to M_{GA}/2, then the other to M_{GA}.
- Using a face wrench (2), insert lock screw into the adjusting screw and tighten to tightening torque M_{GK}.
- After mounting, the frictional drag F_R should be as shown in the table below. If the frictional drag varies significantly, loosen and re-adjust adjusting screws!

Do not remove shaft!

Shaft diameter	Screwdri	Screwdriver (1)		ench (2)	Tightening to	Frictional drag F _R ca.	
	[mm	n]	[mn	n]	adjusting screw	lock screw	(one Linear Bushing)
[mm]	а	b	S	А	M _{GA}	M _{GK}	[N]
12	0.8	5	1.5	5,5	8	110	1,5
16	0.8	5	1.5	5,5	11	110	2
20	1	8	2	8	30	180	3,8
25	1	8	2	8	45	380	5,6
30	1.2	10	2.5	10	70	800	7,5
40	1.2	10	2.5	10	100	800	10
50	1.6	14	3	13	180	1300	15

Installation of seal

- Push seal onto the shaft, aligning the lip with the groove.

Press seal into the mounting bore.

With each installed seal the frictional drag rises higher than the value F_{R} . If two seals are installed, it increases to roughly three times the value stated in the table.

Torque-resistant Linear Bushings

Torque-resistant Linear Bushings, R0696 0.. Type 1: with one Ball guide groove

Torque-resistant Linear Bushings, R0696 3.. Type 2: with two ball guide grooves

Structural design

- Plastic ball retainer and outer sleeve
- Hardened steel load bearing plates
- Balls made of anti-friction bearing steel
- Precision Steel Shaft with ball guide
 groove
- Hardened steel adjusting screw
- Steel lock nut

Shaft	Part numbers torque-resistant Linear Bushings with shaft						
Ød	Standard length	Shaft to	Customized shaft				
[mm]	per table	specified length ¹⁾					
12	R0696 012 80	R0696 012 89	R0696 012 86				
16	R0696 016 80	R0696 016 89	R0696 016 86				
20	R0696 020 80	R0696 020 89	R0696 020 86				
25	R0696 025 80	R0696 025 89	R0696 025 86				
30	R0696 030 80	R0696 030 89	R0696 030 86				
40	R0696 040 80	R0696 040 89	R0696 040 86				
50	R0696 050 80	R0696 050 89	R0696 050 86				
	Τ	•	·				

85 Shaft length 900 mm
 87 Shaft length 1200 mm

- 88 Shaft length 2000 mm

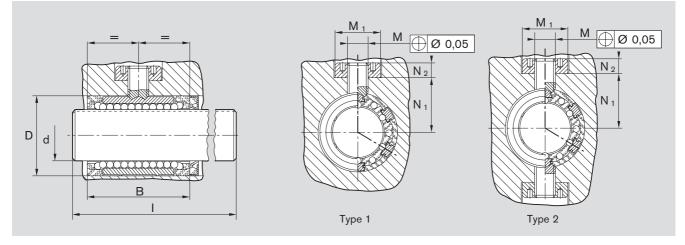
Part numbers Torque-resistant Linear Bushings without Shaft: R0696 0.. 00

Shaft	Part numbers torque-resistant-Linear Bushings with shaft						
Ød	Standard length	Shaft to	Customized shaft				
[mm]	per table	specified length ¹⁾					
20	R0696 320 80	R0696 320 89	R0696 320 86				
25	R0696 325 80	R0696 325 89	R0696 325 86				
30	R0696 330 80	R0696 330 89	R0696 330 86				
40	R0696 340 80	R0696 340 89	R0696 340 86				
50	R0696 350 80	R0696 350 89	R0696 350 86				
	T						

85 Shaft length 900 mm

- 87 Shaft length 1200 mm

- 88 Shaft length 2000 mm

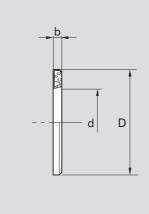

Part numbers torque-resistant Linear Bushings without Shaft: R0696 3.. 00

¹⁾ Also available with tubular shaft from: Ø 25 R0696 ... 69 or with corrosion-resistant steel shaft to ISO 683-17 / EN 10088: R0696 ... 79.

Shaft Ø d	Part numbers Seals					
[mm]	Type 1	Type 2				
12	R1331 112 00	-				
16	R1331 116 00	-				
20	R1331 120 00	R1331 320 00				
25	R1331 125 00	R1331 325 00				
30	R1331 130 00	R1331 330 00				
40	R1331 140 00	R1331 340 00				
50	R1331 150 00	R1331 350 00				

Seals must be ordered seperately.

Dimensions [mm]					Standard	Тог	que	Load Ca	pacities ²⁾	Mass				
Ø	d							length [mm]	M _t	[Nm]	[N]	Linear Bushings	Shaft
Type 1 1	Гуре 2	D ¹⁾	В	М	M_1	N_1	N_2	I	Type 1	Type 2	dyn. C	stat. C ₀	[kg]	[kg/m]
					+0.1									
12	-	22	32	M6x0.5	14	15.5	5	400	2	-	640	420	0.026	0.89
16	-	26	36	M6x0.5	14	19.5	5	400	3.3	-	780	530	0.032	1.57
20	20	32	45	M10x1	22	21.5	8	500	7.5	12	1550	1050	0.064	2.45
25	25	40	58	M10x1	22	28.5	8	500	15	24	3030	2180	0.135	3.80
30	30	47	68	M12x1	26	32	9.5	600	23	37	3680	2790	0.210	5.50
40	40	62	80	M12x1	26	44	9.5	600	53	86	6320	4350	0.390	9.80
50	50	75	100	M16x1.5	34	52	12.5	600	103	167	9250	6470	0.680	15.30


¹⁾ Recommended mounting bore: D^{JS7}

²⁾ The load capacities stated are minimum values as the position and direction of load cannot always be precisely defined.

The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the "C" figures in the table must be multiplied by a factor of 1.26.

Seal

- Structural design
- With metal case
- Elastomer seal

	Dimensions [mm]	
Ød	D ³⁾	b
		+0.3
12	22	3
16	26	3
20	32	4
25	40	4
30	47	5
40	62	5
50	75	6

³⁾ The outer diameter D is about 0.1 mm oversized.

No retaining elements are required.

Torque-resistant Compact Linear Bushings

Torque-resistant Compact Linear Bushings, R0720

Structural design

- Plastic ball retainer and outer sleeve
- Hardened steel load bearing plates
- Balls made of anti-friction bearing
- steel
 Precision Steel Shaft with hall quic
- Precision Steel Shaft with ball guide groove
- Hardened steel adjusting screw
- Steel lock screw

One ball guide groove for

Two ball guide grooves for

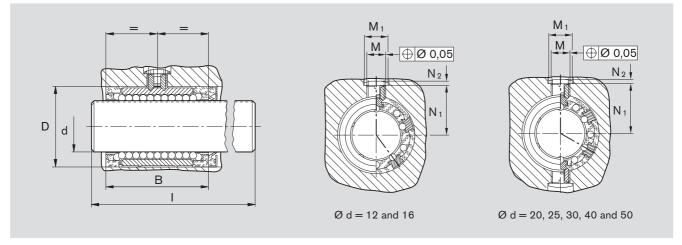
shaft diameter d = 12 and 16 mm

shaft diameter d = 20 mm and over

Shaft	Part numbers torque-resistant Compact Linear Bushings with shaft						
Ød	Standard length	Shaft to	Customized				
[mm]	per table	specified length ¹⁾	shaft				
12	R0720 012 80	R0720 012 89	R0720 012 86				
16	R0720 016 80	R0720 016 89	R0720 016 86				
20	R0720 320 80	R0720 320 89	R0720 320 86				
25	R0720 325 80	R0720 325 89	R0720 325 86				
30	R0720 330 80	R0720 330 89	R0720 330 86				
40	R0720 340 80	R0720 340 89	R0720 340 86				
50	R0720 350 80	R0720 350 89	R0720 350 86				

- 85 Shaft length 900 mm - 87 Shaft length 1200 mm

- 88 Shaft length 2000 mm


Part numbers torque-resistant Compact Linear Bushings without shaft: Sizes Ø 12 and 16: R0720 0.. 00 Sizes Ø 20 to 50: R0720 3.. 00

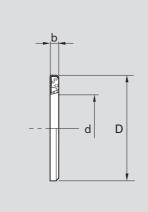
¹⁾ Also available with tubular shaft from: Ø 25 R0720 ... 69 or with corrosion-resistant steel shaft to ISO 683-17 / EN 10088: R0720 ... 79.

[mm] 12 R1331 112 00
16 R1331 116 00
20 R1331 320 00
25 R1331 325 00
30 R1331 330 00
40 R1331 340 00
50 R1331 350 00

Seals must be ordered seperately.

Dimensions [mm]					Standard	Torque	Load Ca	pacities ²⁾	Mass			
							length [mm]	M _t	[N]	Linear Bushings	Shaft
Ød	D ¹⁾	В	М	M ₁	N_1	N_2	I	[Nm]	dyn. C	stat. C ₀	[kg]	[kg/m]
					+0.1							
12	22	32	M6x0.5	8	14.4	1.3	400	2	640	420	0.026	0.89
16	26	36	M6x0.5	8	16.4	1.3	400	3.3	780	530	0.032	1.57
20	32	45	M10x1	12.5	21.8	1.9	500	12	1550	1050	0.071	2.45
25	40	58	M10x1	12.5	25.8	1.9	500	24	3030	2180	0.130	3.80
30	47	68	M12x1	15	29.7	2.5	600	37	3680	2790	0.200	5.50
40	62	80	M12x1	15	37.2	2.5	600	86	6320	4350	0.380	9.80
50	75	100	M16x1.5	20	46.7	3	600	167	9250	6470	0.620	15.30

¹⁾ Recommended mounting bore: D^{K6}


²⁾ The load capacities stated are minimum values as the position and direction of load cannot always be precisely defined.

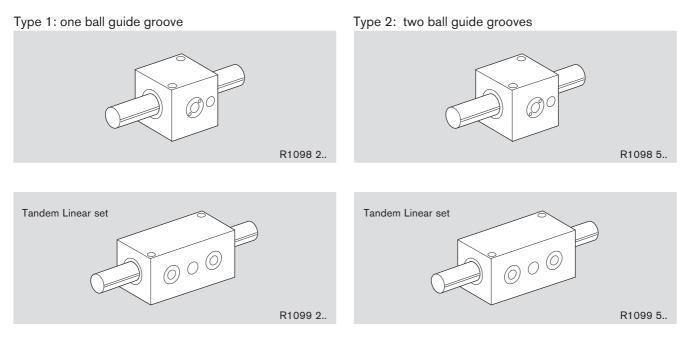
The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the 'C' figures in the table must be multiplied by a factor of 1.26.

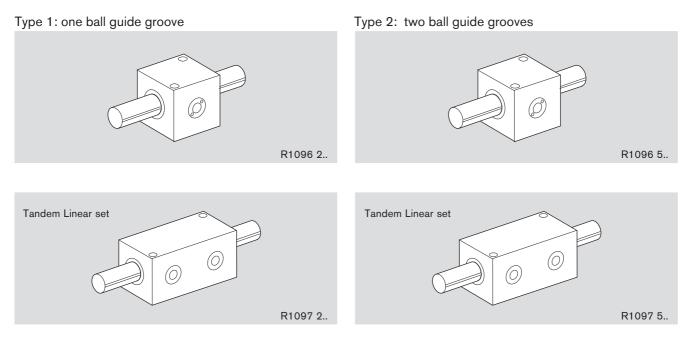
Seal

Structural design

- · With metal case
- Elastomer seal

	Dimensions [mm]	
Ød	D ³⁾	b
		+0,3
12	22	3
16	26	3
20	32	4
25	40	4
30	47	5
40	62	5
50	75	6

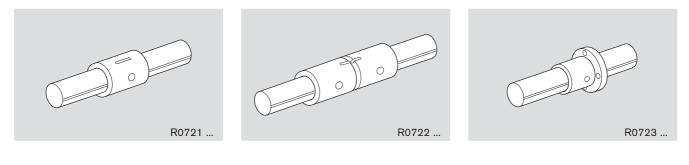

³⁾The outer diameter D is about 0.1 mm oversized. No retaining elements required.


Linear sets with Torque-resistant Linear Bushings

Overview/Mounting instructions

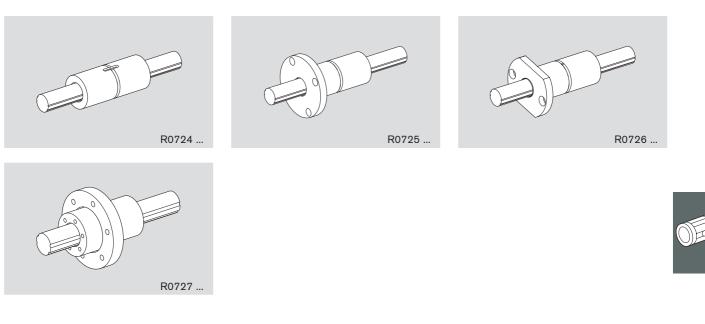
Linear sets with torque-resistant Linear Bushings, aluminum housing

Linear sets with torque-resistant Linear Bushings, steel housing


Mounting instructions

Linear sets are ready mounted and adjusted to zero-clearance. If the shaft has been removed, it is necessary to loosen the adjusting screws and readjust the torque-resistant Linear Bushing.

Linear sets with torque-resistant Compact Linear Bushings, sleeve design


/!\

Mounting instructions

Linear sets (sleeve design) are ready mounted and adjusted to zeroclearance. If the shaft has been removed, it is necessary to loosen the adjusting screws and re-adjust the torque-resistant Linear Bushing.

Torque-resistant Linear Bushings with four ball guide grooves

Mounting instructions

With torque-resistant Linear Bushings with four ball guide grooves, the Linear Bushings and Shaft are delivered seperately. When inserting the Shaft ensure that the grooves align and do not tilt!

Linear sets with Torque-resistant Linear Bushings, Aluminum Housing

Linear sets, R1098 2.. Type 1: one ball guide groove

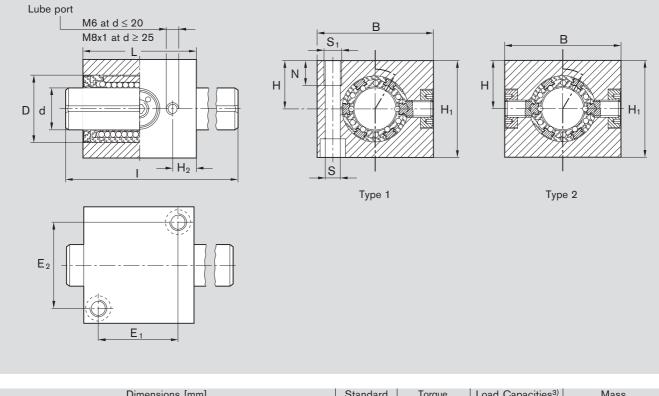
Linear sets, R1098 5.. Type 2: two ball guide grooves

Structural design

- Precision Housing, lightweight series, (aluminum)
- Torque-Resistant Linear Bushing
- Precision Steel Shaft with ball guide
 groove
- Torque-transmitting steel load bearing plates adjusted to zero clearance before leaving the factory
- External seals
- Stability against cocking loads: see Linear Sets, Tandem version
- 1 or 2 ball guide grooves
- · Easy re-lubrication

Shaft	Part numbers Linear set with shaft						
Ød	Standard length	Shaft to	Customized				
[mm]	per table	specified length ¹⁾	shaft				
12	R1098 212 80	R1098 212 89	R1098 212 86				
16	R1098 216 80	R1098 216 89	R1098 216 86				
20	R1098 220 80	R1098 220 89	R1098 220 86				
25	R1098 225 80	R1098 225 89	R1098 225 86				
30	R1098 230 80	R1098 230 89	R1098 230 86				
40	R1098 240 80	R1098 240 89	R1098 240 86				
50	R1098 250 80	R1098 250 89	R1098 250 86				
	T						

85 Shaft length 900 mm
 87 Shaft length 1200 mm
 88 Shaft length 2000 mm


Shaft	Pa	rt numbers Linear set with s	haft
Ød	Standard length	Shaft to	Customized
[mm]	per table	specified length ¹⁾	shaft
20	R1098 520 80	R1098 520 89	R1098 520 86
25	R1098 525 80	R1098 525 89	R1098 525 86
30	R1098 530 80	R1098 530 89	R1098 530 86
40	R1098 540 80	R1098 540 89	R1098 540 86
50	R1098 550 80	R1098 550 89	R1098 550 86
	T		

- 85 Shaft length 900 mm

- 87 Shaft length 1200 mm

- 88 Shaft length 2000 mm

¹⁾ Also available with tubular shaft: from Ø 25 R1098-...-69 or with corrosion-resistant steel shaft to DIN 17230 / EN 10088: R1098-...-79.

	Dimensions [mm]												Standard	Tore	que	Load Ca	apacities ³⁾	Ma	ass
	Ød												length [mm]	M _t [I	Nm]	[N]	Linear	Shaft
Type1	Type 2	В	H_1	H ¹⁾	H_2	L	D	E ₁	E_2	S ²⁾	S ₁	Ν	I	Type 1T	ype 2	dyn. C	stat. C ₀	set	
			+	0.013														[kg]	[kg/m]
			-	0.022															
12	2 –	42	35	18	8.5	40	22	28	30	5.3	M6	12	400	2	-	640	420	0.15	0.89
16	i –	50	42	22	10	44	26	30	36	5.3	M6	12	400	3.3	-	780	530	0.22	1.57
20) 20	60	50	25	11	55	32	39	44	6.6	M8	12	500	7.5	12	1550	1050	0.42	2.45
25	5 25	74	60	30	15.5	68	40	48	54	8.4	M10	15	500	15	24	3030	2180	0.7	3.80
30	30	84	70	35	16.5	80	47	58	62	10.5	M12	18	600	23	37	3680	2790	1.1	5.50
40) 40	108	90	45	18.5	92	62	64	80	13.5	M16	20	600	53	86	6320	4350	2.1	9.80
50) 50	130	105	50	22.5	114	75	84	100	13.5	M16	20	600	103	167	9250	6470	3.5	15.30

¹⁾ If two or more Linear sets are mounted on the same shaft, they are leveled to the same dimension H by grinding after mounting. Dimension H is then 0.5 mm smaller.

²⁾ Mounting screws to ISO 4762-8.8.

³⁾ The load capacities stated are minimum values as the position and direction of load cannot always be precisely defined.

The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the 'C' figures in the table must be multiplied by a factor of 1.26.

Lubricating instructions: Lubricate only when shaft inserted, add lubricant through lube port until excess emerges.

Linear sets with torque-resistant Linear Bushings, aluminum housing

Tandem

Linear sets, R1099 2.. Type 1: one ball guide groove

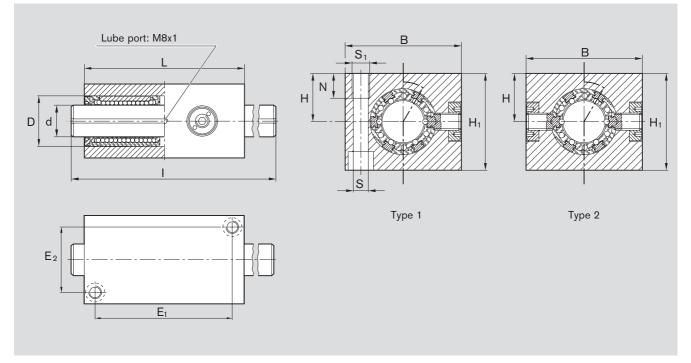
Linear-Sets, R1099 5.. Type 2: two ball guide grooves

Structural design

- Precision Tandem Housing, lightweight series, (aluminum)
- · Two torque-resistant Linear Bushings
- Precision Steel Shaft with ball guide groove
- Torque transmitting steel load bearing plates adjusted to zero clearance before leaving the factory
- · External seals
- · Stability against cocking loads
- 1 or 2 ball guide grooves
- · Easy re-lubrication

Shaft	Pa	rt numbers Linear set with s	haft
Ød	Standard length	Shaft to	Customized
[mm]	per table	specified length ¹⁾	shaft
12	R1099 212 80	R1099 212 89	R1099 212 86
16	R1099 216 80	R1099 216 89	R1099 216 86
20	R1099 220 80	R1099 220 89	R1099 220 86
25	R1099 225 80	R1099 225 89	R1099 225 86
30	R1099 230 80	R1099 230 89	R1099 230 86
40	R1099 240 80	R1099 240 89	R1099 240 86
50	R1099 250 80	R1099 250 89	R1099 250 86
	Τ		

- 85 Shaft length 900 mm 87 Shaft length 1200 mm - 88 Shaft length 2000 mm


Shaft	Pa	rt numbers Linear set with s	haft
Ød	Standard length	Shaft to	Customized
[mm]	per table	specified length ¹⁾	shaft
20	R1099 520 80	R1099 520 89	R1099 520 86
25	R1099 525 80	R1099 525 89	R1099 525 86
30	R1099 530 80	R1099 530 89	R1099 530 86
40	R1099 540 80	R1099 540 89	R1099 540 86
50	R1099 550 80	R1099 550 89	R1099 550 86
	Τ		

85 Shaft length 900 mm

87 Shaft length 1200 mm

88 Shaft length 2000 mm

¹⁾ Also available with tubular shaft to Ø25 R1099-...-69 or with corrosion-resistant steel shaft to DIN 17230 / EN 10088: R1099-...-79.

	Dimensions [mm]											Standard	Torque		Load Capacities ³⁾		Mass	
Ø	d											length [mm]	M, [1	Nm]	1]	N]	Linear	Shaft
Type 1 T	ype 2	В	H ₁	H ¹⁾	L	D	E ₁	E ₂	S ²⁾	S ₁	Ν	I.	Type 1T	ype 2	dyn. C	stat. C ₀	set	
				+0.013													[kg]	[kg/m]
				-0.022														
12	-	42	35	18	76	22	64	30	5.3	M6	12	400	3.2	-	1040	840	0.29	0.89
16	-	50	42	22	84	26	70	36	5.3	M6	12	400	5.5	-	1260	1060	0.43	1.57
20	20	60	50	25	104	32	88	44	6.6	M8	12	500	12	20	2500	2100	0.8	2.45
25	25	74	60	30	130	40	110	54	8.4	M10	15	500	24	40	4900	4360	1.5	3.80
30	30	84	70	35	152	47	130	62	10.5	M12	18	600	37	60	6000	5580	2.2	5.50
40	40	108	90	45	176	62	148	80	13.5	M16	20	600	86	140	10200	8700	4.0	9.80
50	50	130	105	50	224	75	194	100	13.5	M16	20	600	167	272	15000	12940	6.9	15.30

¹⁾ If two or more Linear sets are mounted on the same shaft, they are leveled to the same dimension H by grinding after mounting. Dimension H is then 0.5 mm smaller.

²⁾ Mounting screws to ISO 4762-8.8.

³⁾ Load capacity, when both linear bushings are subject to equal loading.

The load capacities stated are minimum values as the position and direction of load cannot always be precisely defined.

The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the 'C' figures in the table must be multiplied by a factor of 1.26.

Lubricating instructions: Lubricate only when the shaft is inserted, add lubricant through lube port until excess emerges.


Linear sets with torque-resistant Linear Bushings, steel housing

Linear sets, R1096 2.. Type 1: one ball guide groove

Linear sets, R1096 5.. Type 2: two ball guide grooves

Structural design

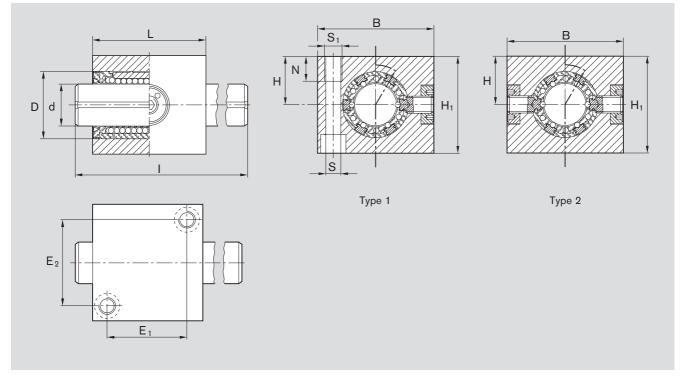
- Precision housing (steel)
- Torque-resistant Linear Bushings
- Precision Steel Shaft with ball guide groove
- Torque-transmitting steel load bearing plates adjusted to zeroclearance before leaving the factory
- External seals
- Stability against cocking loads: see Linear sets, Tandem version
- 1 or 2 ball guide grooves

Shaft	P	art numbers Linear set with s	shaft
Ød	Standard length	Shaft to	Customized
[mm]	per table	specified length ¹⁾	shaft
12	R1096 212 80	R1096 212 89	R1096 212 86
16	R1096 216 80	R1096 216 89	R1096 216 86
20	R1096 220 80	R1096 220 89	R1096 220 86
25	R1096 225 80	R1096 225 89	R1096 225 86
30	R1096 230 80	R1096 230 89	R1096 230 86
40	R1096 240 80	R1096 240 89	R1096 240 86
50	R1096 250 80	R1096 250 89	R1096 250 86

- 85 Shaft length 900 mm

- 87 Shaft length 1200 mm

88 Shaft length 2000 mm



Shaft	Pa	rt numbers Linear set with s	shaft
Ød	Standard length	Shaft to	Customized
[mm]	per table	specified length ¹⁾	shaft
20	R1096 520 80	R1096 520 89	R1096 520 86
25	R1096 525 80	R1096 525 89	R1096 525 86
30	R1096 530 80	R1096 530 89	R1096 530 86
40	R1096 540 80	R1096 540 89	R1096 540 86
50	R1096 550 80	R1096 550 89	R1096 550 86
	T		

85 Shaft length 900 mm
87 Shaft length 1200 mm

88 Shaft length 2000 mm

¹⁾ Also available with tubular shaft to Ø25 R1096-...-69 or with corrosion-resistant steel shaft to DIN 17230 / EN 10088: R1096-...-79.

	Dimensions [mm]											Standard Torque Load Capac		pacities ³⁾	Ma	ass		
Ø	d											length [mm]	M _t [1	Nm]	[]	N]	Linear	Shaft
Type 1 T	Гуре 2	В	H ₁	H ¹⁾	L	D	E ₁	E_2	S ²⁾	S ₁	Ν	I	Type 1T	ype 2	dyn. C	stat. C ₀	set	
				+0.013													[kg]	[kg/m]
				-0.022														
12	-	42	35	18	40	22	28	30	5.3	M6	12	400	2	-	640	420	0.35	0.89
16	-	50	42	22	44	26	30	36	5.3	M6	12	400	3.3	-	780	530	0.55	1.57
20	20	60	50	25	55	32	39	44	6.6	M8	12	500	7.5	12	1550	1050	1.0	2.45
25	25	74	60	30	68	40	48	54	8.4	M10	15	500	15	24	3030	2180	1.5	3.80
30	30	84	70	35	80	47	58	62	10.5	M12	18	600	23	37	3680	2790	2.7	5.50
40	40	108	90	45	92	62	64	80	13.5	M16	20	600	53	86	6320	4350	5.0	9.80
50	50	130	105	50	114	75	84	100	13.5	M16	20	600	103	167	9250	6470	8.7	15.30

¹⁾ If two or more Linear sets are mounted on the same shaft, they are leveled to the same dimension H by grinding after mounting. Dimension H is then 0.5 mm smaller.

²⁾ Mounting screws to ISO 4762-8.8.

³⁾ The load capacities are minimum values as the position and direction of load cannot always be precisely defined.

The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the 'C' figures in the table must be multiplied by a factor of 1.26.

Linear sets with torque-resistant Linear Bushings, steel housing

Tandem

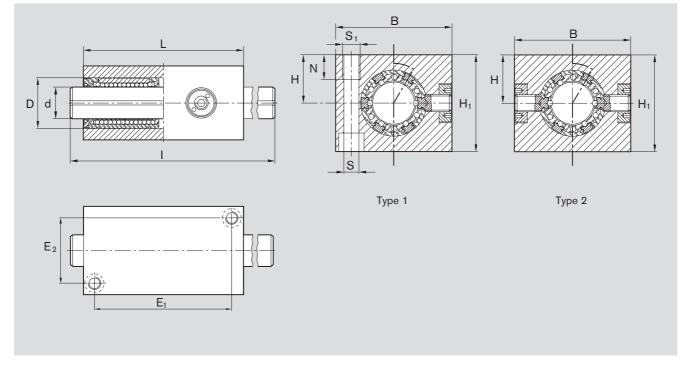
Linear sets, R1097 2.. Type 1: one ball guide groove

Linear sets, R1097 5.. Type 2: two ball guide grooves

Structural design

- Precision housing (steel)
- Two torque-resistant Linear Bushings
- Precision steel Shaft with ball guide
 groove
- Torque transmitting steel load bearing plates adjusted to zeroclearance before leaving the factory
- · External seals
- Stability against cocking loads
- 1 or 2 ball guide grooves

Shaft	Pa	rt numbers Linear set with s	haft
Ød	Standard length	Shaft to	Customized
[mm]	per table	specified length ¹⁾	shaft
12	R1097 212 80	R1097 212 89	R1097 212 86
16	R1097 216 80	R1097 216 89	R1097 216 86
20	R1097 220 80	R1097 220 89	R1097 220 86
25	R1097 225 80	R1097 225 89	R1097 225 86
30	R1097 230 80	R1097 230 89	R1097 230 86
40	R1097 240 80	R1097 240 89	R1097 240 86
50	R1097 250 80	R1097 250 89	R1097 250 86
	Т		


- 85 Shaft length 900 mm
- 87 Shaft length 1200 mm
- 88 Shaft length 2000 mm

Shaft	Pa	rt numbers Linear set with s	haft
Ød	Standard length	Shaft to	Customized
[mm]	per table	specified length ¹⁾	shaft
20	R1097 520 80	R1097 520 89	R1097 520 86
25	R1097 525 80	R1097 525 89	R1097 525 86
30	R1097 530 80	R1097 530 89	R1097 530 86
40	R1097 540 80	R1097 540 89	R1097 540 86
50	R1097 550 80	R1097 550 89	R1097 550 86

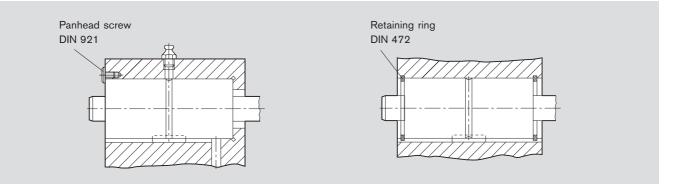
85 Shaft length 900 mm
 87 Shaft length 1200 mm
 88 Shaft length 2000 mm

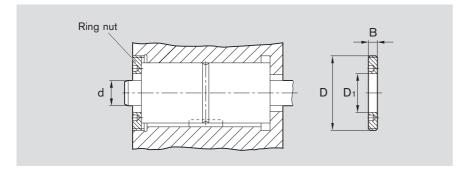
¹⁾ Also available with tubular shaft to Ø25 R1097-...-69 or with corrosion-resistant steel shaft to DIN 17230 / EN 10088: R1099-...-79.

	Dimensions [mm]											Standard	Tor	que	Load Ca	pacities ³⁾	Ma	ISS
Ø	d											length [mm]	M _t [I	Nm]	1]	N] [V	Linear	Shaft
Type 1T	ype 2	В	H ₁	H ¹⁾	L	D	E ₁	E_2	S ²⁾	S ₁	Ν	I.	Type 1T	ype 2	dyn. C	stat. C ₀	set	
				+0.013													[kg]	[kg/m]
				-0.022														
12	-	42	35	18	76	22	64	30	5.3	M6	12	400	3.2	-	1040	840	0.7	0.89
16	-	50	42	22	84	26	70	36	5.3	M6	12	400	5.5	-	1260	1060	1.0	1.57
20	20	60	50	25	104	32	88	44	6.6	M8	12	500	12	20	2500	2100	1.9	2.45
25	25	74	60	30	130	40	110	54	8.4	M10	15	500	24	40	4900	4360	3.5	3.80
30	30	84	70	35	152	47	130	62	10.5	M12	18	600	37	60	6000	5580	5.2	5.50
40	40	108	90	45	176	62	148	80	13.5	M16	20	600	86	140	10200	8700	9.8	9.80
50	50	130	105	50	224	75	194	100	13.5	M16	20	600	167	272	15000	12940	17.0	15.30

¹⁾ If two or more Linear sets are mounted on the same shaft, they are leveled to the same dimension H by grinding after mounting. Dimension H is then 0.5 mm smaller.

²⁾ Mounting screws to ISO 4762-8.8.


³⁾ The load capacities are minimum values as the position and direction of load cannot always be precisely defined.


The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the 'C' figures in the table must be multiplied by a factor of 1.26.

Linear sets with torque-resistant Compact Linear Bushings

Mounting instructions

- Recommendations for moutning, arrangement of lubrication channels and bores as well as retention
- Recommended mounting bore: D^{H6} (D^{J6})

Flanged version

	-										
Shaft	Ring nut										
Ød	Part numbers	Dimensio	ns (m	nm]							
[mm]		D	D_1	В							
12	R1507 1 4003	M40x1,5	22	8							
16	R1507 2 4004	M45x1,5	28	8							
20	R1507 3 4005	M55x1,5	34	10							
25	R1507 4 4006	M70x1,5	42	12							
30	R1507 5 4007	M78x2	52	15							
40	R1507 6 4009	M92x2	65	16							
50	R1507 7 4011	M112x2	82	18							

Shaft	Screw
Ød	ISO 4762-8.8
[mm]	
12	M4x16
16	M4x16
20	M5x16
25	M6x20
30	M8x25
40	M8x25
50	M10x30

Lubrication

- Lubrication for version with one Torque-Resistant Compact Linear Bushing
 Lubricate only when shaft inserted. Add lubricant through lube port diam.
 3.9 until excess emerges.
- Lubrication for Tandem version
 - Lubricate only when shaft inserted. Add lubricant through the centrally located lube groove on the outer diameter until excess emerges.
- Lubrication for Flanged version
 - Lubricate only when shaft inserted. Add lubricant through the recessed funnel-shaped lube port on the end face until excess emerges.

one ball guide groove

two ball guide grooves

for Shafts Ø d = 20 mm

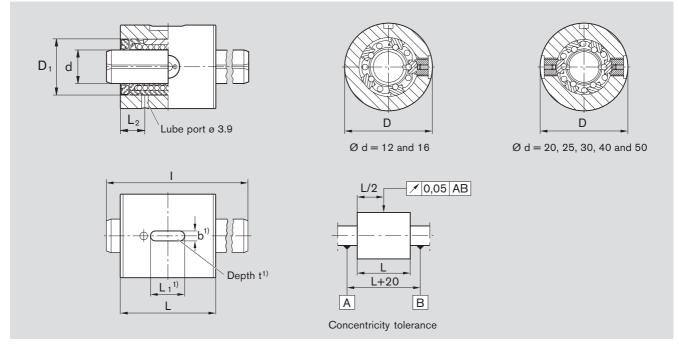
for Shaft Ø d = 12 and 16 mm

Linear sets with torque-resistant Compact Linear Bushings

Linear sets, R0721

Structural design

- Space-saving steel sleeve
- Torque-resistant Compact Linear Bushing
- Precision Steel Shaft with ball guide groove
- Easy re-lubrication
- Torque transmitting steel load bearing plates adjusted to zero clearance before leaving factory
- External seals
- Stability against cocking loads: see Linear sets (sleeve design), Tandem version
- Keyway for torque transmission


Shaft	Part numbers Linear set with shaft		
Ød	Standard length	Shaft to	Customized
[mm]	per table	specified length ¹⁾	shaft
12	R0721 212 80	R0721 212 89	R0721 212 86
16	R0721 216 80	R0721 216 89	R0721 216 86
20	R0721 520 80	R0721 520 89	R0721 520 86
25	R0721 525 80	R0721 525 89	R0721 525 86
30	R0721 530 80	R0721 530 89	R0721 530 86
40	R0721 540 80	R0721 540 89	R0721 540 86
50	R0721 550 80	R0721 550 89	R0721 550 86
	T		

- 85 Shaft length 900 mm

- 87 Shaft length 1200 mm

- 88 Shaft length 2000 mm

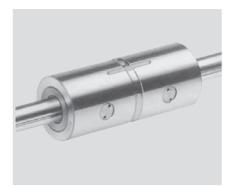
¹⁾ Also available with tubular shaft to Ø25 R0721-...-69 or with corrosion-resistant steel shaft to DIN 17230 / EN 10088: R0721-...-79. Dimensions

¹⁾ For Key A... DIN 6885.

	Dimensions [mm]							Standard Torque Load Capacities ²⁾		Mass			
								length [mm]	M _t	[]	N]	Linear set	Shaft
Ød	D	L	D ₁	L ₁	b	t	L_2	1	[Nm]	dyn. C	stat. C ₀	[kg]	[kg/m]
	h6	h11			P9								
12	32	40	22	14	5	3	11	400	2	640	420	0.16	0.89
16	36	44	26	16	5	3	12	400	3,3	780	530	0.20	1.57
20	48	55	32	20	5	3	14	500	12	1550	1050	0.50	2.45
25	56	68	40	25	6	3.5	15.5	500	24	3030	2180	0.80	3.80
30	65	80	47	28	6	3.5	16.5	600	37	3680	2790	1.20	5.50
40	80	92	62	32	8	4	18.5	600	86	6320	4350	1.80	9.80
50	100	114	75	40	8	4	22.5	600	167	9250	6470	3.70	15.30

²⁾ The load capacities are minimum values as the position and direction of load cannot always be precisely defined.

The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the 'C' figures in the table must be multiplied by a factor of 1.26.


Linear sets with torque-resistant Compact Linear Bushings

Tandem

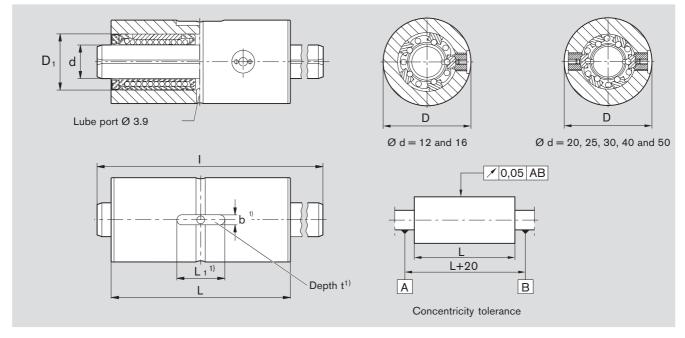
Linear sets, R0722

Structural design

- Space-saving steel sleeve
- Two torque-resistant Compact Linear Bushings
- Precision steel shaft with ball guide groove
- · Easy re-lubrication
- Torque-transmitting steel load bearing plates adjusted to zeroclearance before leaving factory
- External seals
- Stability against cocking loads
- Keyway for torque transmission
- · Easy re-lubrication

Shaft	Pa	Part numbers Linear set with shaft									
Ød	Standard length	Shaft to	Customized								
[mm]	per table	specified length ¹⁾	shaft								
12	R0722 212 80	R0722 212 89	R0722 212 86								
16	R0722 216 80	R0722 216 89	R0722 216 86								
20	R0722 520 80	R0722 520 89	R0722 520 86								
25	R0722 525 80	R0722 525 89	R0722 525 86								
30	R0722 530 80	R0722 530 89	R0722 530 86								
40	R0722 540 80	R0722 540 89	R0722 540 86								
50	R0722 550 80	R0722 550 89	R0722 550 86								
	- 85	Shaft length 900 mm									

- 87 Shaft length 1200 mm


- 88 Shaft length 2000 mm

¹⁾ Also available with tubular shaft to Ø25 R0722-...-69 or

with corrosion-resistant steel shaft to DIN 17230 / EN 10088: R0722-...-79.

one ball guide groove for Shaft \emptyset d = 12 and 16 mm

two ball guide grooves for Shafts Ø d = 20 mm Dimensions

1) For key A... DIN 6885

		Dimer	nsions [n	nm]			Standard Torque		Load Capacities ²⁾	Ma	Mass	
							length [mm]	M _t	[N]	Linear set	Shaft	
Ød	D	L	D ₁	L ₁	b	t	1	[Nm]	dyn. C stat. C ₀	[kg]	[kg/m]	
	h6	h11			P9							
12	32	76	22	20	5	3	400	3.2	1040 840	0.32	0.89	
16	36	84	26	22	5	3	400	5.5	1260 1060	0.40	1.57	
20	48	104	32	28	5	3	500	20	2500 2100	0.95	2.45	
25	56	130	40	36	6	3.5	500	40	4900 4360	1.50	3.80	
30	65	152	47	40	6	3.5	600	60	6000 5580	2.30	5.50	
40	80	176	62	45	8	4	600	140	10200 8700	3.50	9.80	
50	100	224	75	63	8	4	600	272	15000 12940	7.30	15.30	

 $^{\mbox{\tiny 2)}}\mbox{Load}$ capacity, when both linear bushings are subject to equal loading.

The load capacities are minimum values as the position and direction of load cannot always be precisely defined.

Linear sets with torque-resistant Compact Linear Bushings

Flanged

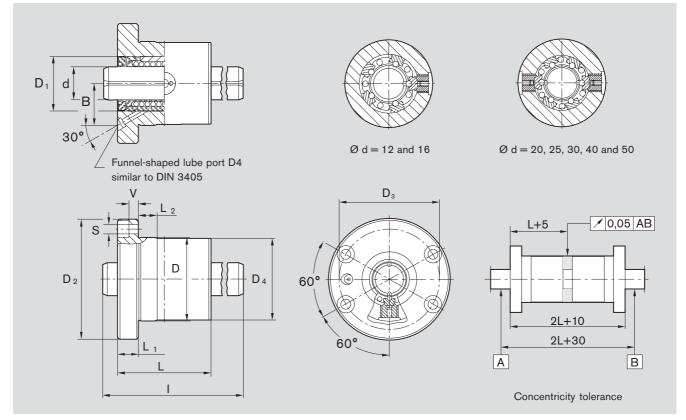
Linear sets, R0723

Structural design

- Flanged steel sleeve
- Torque-resistant Compact Linear Bushing
- Precision steel shaft with ball guide groove
- Torque transmitting steel load bearing plates adjusted to zeroclearance before leaving factory
- External seals
- Stability against cocking loads installation of two linear sets (see also "Retention options - Linear Sets - sleeve design")
- · Easy re-lubrication

Shaft	Part numbers Linear set with shaft								
Ød	Standard length	Shaft to	Customized						
[mm]	per table	specified length ¹⁾	shaft						
12	R0723 212 80	R0723 212 89	R0723 212 86						
16	R0723 216 80	R0723 216 89	R0723 216 86						
20	R0723 520 80	R0723 520 89	R0723 520 86						
25	R0723 525 80	R0723 525 89	R0723 525 86						
30	R0723 530 80	R0723 530 89	R0723 530 86						
40	R0723 540 80	R0723 540 89	R0723 540 86						
50	R0723 550 80	R0723 550 89	R0723 550 86						
	Τ								

- 85 Shaft length 900 mm


- 87 Shaft length 1200 mm

- 88 Shaft length 2000 mm

¹⁾ Also available with tubular shaft to Ø25 R0723...-69 or with corrosion-resistant steel shaft to DIN 17230 / EN 10088: R0723-...-79.

one ball guide groove for Shaft Ø d = 12 and 16 mm

two ball guide grooves for Shafts Ø d = 20 mm Dimensions

	Dimensions [mm]										1	Standard	Torque	Load Ca	pacities ²⁾	Mass	
							length [mm]	M _t	1]	N]	Linear set	Shaft					
Ød	D	D_4	D_1	D_2	L	L ₁	L_2	D_3	S ¹⁾	V	В	I	[Nm]	dyn. C	stat. C ₀	[kg]	[kg/m]
	h6	-0.1			h11	-0.2											
		-0.3															
12	32	32	22	50	40	10	10	40	4.5	4.5	17.4	400	2	640	420	0.25	0.89
16	36	36	26	54	44	10	10	44	4.5	4.5	20	400	3.3	780	530	0.30	1.57
20	48	48	32	70	55	12	10	58	5.5	5	24	500	12	1550	1050	0.70	2.45
25	56	56	40	82	68	14	10	68	6.6	5.5	29	500	24	3030	2180	1.10	3.80
30	65	65	47	98	80	18	10	80	9	7	33	600	37	3680	2790	1.75	5.50
40	80	80	62	114	92	18	16	95	9	7	41.7	600	86	6320	4350	2.50	9.80
50	100	100	75	140	114	22	16	118	11	8.5	50.5	600	167	9250	6470	4.85	15.30

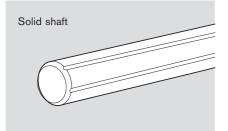
¹⁾ Mounting screws to ISO 4762-8.8.

.

²⁾ The load capacities are minimum values as the position and direction of load cannot always be precisely defined.

The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the 'C' figures in the table must be multiplied by a factor of 1.26.

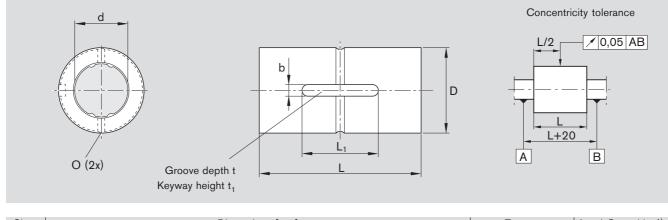
Torque-resistant Linear Bushings with four ball guide grooves


Torque-resistant Linear Bushings, R0724 2 with four ball guide grooves

Structural design

- Hardened and ground sleeve
- Plastic ball retainer
- Balls made of anti-friction bearing steel
- External seals
- Keyway for torque transmission
- · Easy re-lubrication

Precision steel shaft R0724 0 with four ball guide grooves For torque-resistant Linear Bushings R0724, Flanged R0725, Miniature-Flange R0726 and Rotational Flange R0727


Sizes	Part numbers	Mass
		[kg]
4	R0724 204 00	0.0065
6	R0724 206 00	0.019
8	R0724 208 00	0.023
10	R0724 210 00	0.054
13	R0724 213 00	0.07
16	R0724 216 00	0.15
20	R0724 220 00	0.20
25	R0724 225 00	0.22
30	R0724 230 00	0.35
40	R0724 240 00	0.81
50	R0724 250 00	1.50

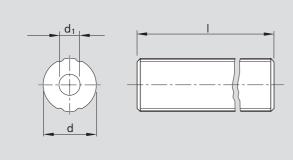
Sizes		ıft	Mass	
	Shaft length	Shaft to	Customized	
	l max.	specified length	shaft	[kg/m]
4	R0724 004 02	R0724 004 89	R0724 004 86	0.10
6	R0724 006 02	R0724 006 89	R0724 006 86	0.21
8	R0724 008 02	R0724 008 89	R0724 008 86	0.38
10	R0724 010 02	R0724 010 89	R0724 010 86	0.60
13	R0724 013 02	R0724 013 89	R0724 013 86	1.00
16	R0724 016 02	R0724 016 89	R0724 016 86	1.50
20	R0724 020 02	R0724 020 89	R0724 020 86	2.00
25	R0724 025 02	R0724 025 89	R0724 025 86	3.10
30	R0724 030 02	R0724 030 89	R0724 030 86	4.80
40	R0724 040 02	R0724 040 89	R0724 040 86	8.60
50	R0724 050 02	R0724 050 89	R0724 050 86	13.10

Sizes ¹⁾	F	aft	Mass	
	Shaft length	Shaft to	Customized	
	l max.	specified length	shaft	[kg/m]
4	R0724 004 32	R0724 004 69	R0724 004 66	0.082
6	R0724 006 32	R0724 006 69	R0724 006 66	0.195
8	R0724 008 32	R0724 008 69	R0724 008 66	0.34
10	R0724 010 32	R0724 010 69	R0724 010 66	0.51
13	R0724 013 32	R0724 013 69	R0724 013 66	0.80
16	R0724 016 32	R0724 016 69	R0724 016 66	1.20

¹⁾ Sizes 20 to 50 on request

Dimensions R0724 2

Sizes		Dimensions [mm]								Torque		Load Capacities ¹⁾	
									[N	lm]	1]	۱]	
	Ød	D	L	L ₁	0	t	t ₁	b	dyn. M _t	stat.M _{t0}	dyn. C	stat. C ₀	
		h6											
4	4	10	16 _{-0.2}	6	-	1.2	2	2	0.59	1.05	680	1220	
6	6	14	25 _{-0.2}	10.5	1	1.2	2.5	2.5	1.20	2.40	970	2280	
8	8	16	25 _{_0.2}	10.5	1.5	1.2	2.5	2.5	1.70	3.70	1150	2870	
10	10	21	33 _{-0.2}	13	1.5	1.5	3	3	3.50	8.20	2170	5070	
13	13	24	36 _{-0.2}	15	1.5	1.5	3	3	16.70	39.20	2120	4890	
16	16	31	50 _{-0.2}	17.5	2	2	3.5	3.5	48	110	4860	11200	
20	18.2	32	60 _{-0.2}	26	2	2.5	4	4	66	133	6200	11300	
25	23	37	70 _{-0.3}	33	3	3	5	5	129	239	9800	16100	
30	28	45	80 _{-0.3}	41	3	4	7	7	229	412	14800	23200	
40	37.4	60	100 _{-0.3}	55	4	4.5	8	10	500	882	24400	37500	
50	47	75	112 _{-0.3}	60	4	5	10	15	1100	3180	36600	74200	


¹⁾ The load capacities are minimum values as the position and direction of load cannot always be precisely defined.

The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the 'C' figures in the table must be multiplied by a factor of 1.26.

Mounting instructions:

Recommended bore tolerance: H6 or H7. Radial clearance: approx. \pm 5 µm; with preload upon request If the shaft had been removed, it is necessary to loosen the adjusting screws and re-adjust the torque-resistant Linear Bushing.

Dimensions R0724 0

Sizes		Dimensions	[mm]
	Ød	d ₁	Shaft length I _{max}
	h7		
4	4	1.5	300
6	6	2	600
8	8	3	600
10	10	4	600
13	13	6	600
16	16	8	600
20	18.2	-	1500
25	23	-	1500
30	28	-	1500
40	37.4	-	1800
50	47	-	1800

Mass [kg]

0.037

0.042

0.094

0.10

0.20

0.22

0.32

0.51

1.15

2.10

Torque-resistant Linear Bushings with four ball guide grooves

Torque-resistant Linear Bushings, R0725 flanged with four ball guide grooves

Torque-resistant Linear Bushings, R0726 Miniature flanged with four ball guide grooves

Structural design

- · Hardened and ground sleeve
- Plastic ball retainer
- Balls made of anti-friction bearing ٠ steel
- External seals ٠
- Easy re-lubrication ٠

40	R0725 240 00
50	R0725 250 00
Sizes	Part numbers
6	R0726 206 00
8	R0726 208 00
10	R0726 210 00

Sizes

6

8

10

13

16

20

25

30

Sizes	Part numbers	Mass
		[kg]
6	R0726 206 00	0.029
8	R0726 208 00	0.035
10	R0726 210 00	0.075
		0101.0

Part numbers

R0725 206 00

R0725 208 00

R0725 210 00

R0725 213 00

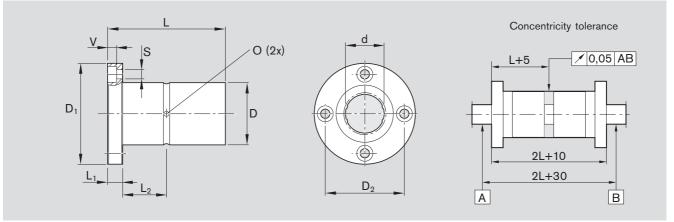
R0725 216 00

R0725 220 00

R0725 225 00

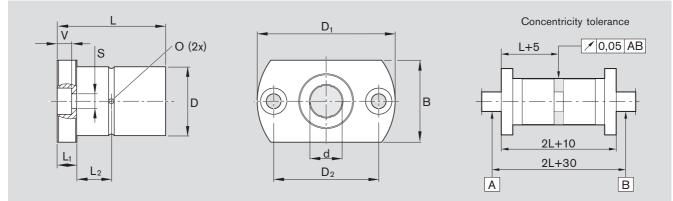
R0725 230 00

Note:


For suitable Shafts see "Precison steel shafts R0724 0 with four ball guide grooves"

The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the 'C' figures in the table must be multiplied by a factor of 1.26.

Mounting instructions:


Recommended bore tolerance: H6 or H7. Radial clearance: approx. \pm 5 µm; with tensioning upon request If the shaft had been removed, it is necessary to loosen the adjusting screws and re-adjust the torque-resistant Linear Bushing.

Dimensions R0725

Sizes		Dimensions [mm]									Torque-resistant [Nm]		Load Capacities ¹⁾ [N]	
	Ød	D h6	D_1	D_2	L	L ₁	L_2	V	S ²⁾	0	-	stat.M _{t0}	dyn. C	stat. C ₀
6	6	14	30	22	25 _{-0.2}	5	7.5	3.3	3.4	1	1.2	2.4	970	2280
8	8	16	32	24	25 _{_0.2}	5	7.5	3.3	3.4	1.5	1.7	3.7	1150	2870
10	10	21	42	32	33_0.2	6	10.5	4.4	4.5	1.5	3.5	8.2	2170	5070
13	13	24	43	33	36_0.2	7	11	4.4	4.5	1.5	16.7	39.2	2120	4890
16	16	31	50	40	50 _{-0.2}	7	18	4.4	4.5	2	48	110	4860	11200
20	18.2	32	51	40	60 _{-0.2}	7	23	4.4	4.5	2	66	133	6200	11300
25	23	37	60	47	70 _{-0.3}	9	26	5.4	5.5	3	129	239	9800	16100
30	28	45	70	54	80 _{-0.3}	10	30	6.5	6.6	3	229	412	14800	23200
40	37.4	60	90	72	100 _{-0.3}	14	36	8.6	9	4	500	882	24400	37500
50	47	75	113	91	112 _{-0.3}	16	40	11	11	4	1100	3180	36600	74200

Dimensions R0726

Sizes		Dimensions [mm]										Torque [Nm]		Load Car	
	Ød	D h6	D_1	D_2	В	L -0.2	L ₁	L_2	V	S ²⁾	0	dyn. M _t	stat.M _{t0}	dyn. C	-
6	6	14	30	22	18	25	5	7.5	3.3	3.4	1	1.2	2.4	970	2280
8	8	16	32	24	21	25	5	7.5	3.3	3.4	1.5	1.7	3.7	1150	2870
10	10	21	42	32	25	33	6	10.5	4.4	4.5	1.5	3.5	8.2	2170	5070

¹⁾ The load capacities are minimum values as the position and direction of load cannot always be precisely defined.

Torque-resistant Linear Bushings with four ball guide grooves

Torque-resistant Linear Bushings, R0727 Rotational flanged with four ball guide grooves

Structual design

- Hardened and ground sleeve
- Plastic ball retainer
- Balls made of anti-friction bearing steel
- External seals
- Integrated cross-roller bearing

Sizes	Part numbers	Mass
		[kg]
20	R0727 220 00	0.45
25	R0727 225 00	0.75
30	R0727 230 00	1.25
40	R0727 240 00	2.30

Note:

For suitable Shafts see "Precison steel shafts R0724 0 with four ball guide grooves"

Dimensions

min 0,6 x L S Fixing screw S₁ D 1 H7 $D_1 D_2$ D₃D D_2^{+0} L. D_4 🗡 0,05 AB Concentricity tolerance L+20 A B

Sizes		Dimensions [mm]										
	Ød	D	D ₁	D_2	D ₃	D_4	L	L ₁	L_2	S	S ₁	t
		h7	h7									
20	18.2	40	66	34	34	56	60 _{-0.2}	13	12	4.5	M4	7
25	23	50	78	40	42	68	70 _{-0.3}	16	13	4.5	M5	8
30	28	61	100	47	52	86	80 _{-0.3}	17	17	6.6	M6	10
40	37.4	76	120	62	64	104	100 _{-0.3}	20	23	9	M6	10

Sizes	То	Torque-resistant Linear Bushings				Cross roller bea	aring	Tightening	torque
	Torque-resistant [Nm] Load (Load Capa	acities ¹⁾ [N]	Load Ca	Load Capacities [N]		Fixing screw	
	dyn. M _t	stat.M _{to}	dyn. C	stat. C ₀	dyn. C	stat. C ₀	[min ⁻¹]		[Nm]
20	66	133	6200	11300	5900	7350	1200	M4	3.9
25	129	239	9800	16100	9110	11500	1000	M4	3.9
30	229	412	14800	23200	13200	18000	800	M6	12.7
40	500	882	24400	37500	22800	32300	600	M8	29.4

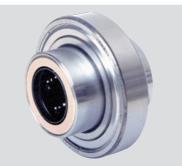
¹⁾ The load capacities are minimum values as the position and direction of load cannot always be precisely defined.

The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the 'C' figures in the table must be multiplied by a factor of 1.26.

Mounting instructions:

Radial clearance: approx. \pm 5 µm; with preloading upon request If the shaft has been removed, it is necessary to loosen the adjusting screws and readjust the torque-resistant Linear Bushing.

Do not loosen Flanged screw (cross-roller bearing).Turn the fixing screw step by step to the values in the table.


Installation recommendation

Linear Bushings for combined linear and rotary motion

The advantages

- Linear Bushings with grooved ball bearings or needle roller bearings
- Precise travel at high capacity
- High RPMs and minimal friction
- For linear applications with additional rotation
- For grip and swivel functions
- For winding applications

Linear Bushings for combined linear and rotary motion

Linear Bushings for combined linear and rotary motion, R0663 with deep groove ball bearings, Series 618

Linear Bushings for combined linear and rotary motion, R0664 with deep groove ball bearings, Series 60

Structural design

• Maintenance-free and sealed with shields (Series 60)

....

Sizes 12 to 40

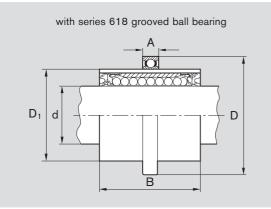
- Segmental Linear Bushing
- Steel sleeve
- External wiper seals
- Pressed-on deep groove ball bearings

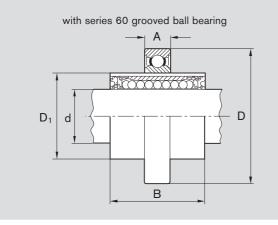
Sizes 5, 8, 50, 60 and 80

- Standard Linear Bushing
- Internal seals
- Pressed-on deep groove ball bearings

with series 618 deep groove ball bearings Series 618 (Sizes 12 to 40)	Ød	
	[mm]	
	5	
	8	

(Sizes 5, 8, 50, 60 and 80)


with series 60 deep groove ball bearings


Shaft	Part numbers	Mass
Ød	with series 60 deep grooved ball bearings	
[mm]		[kg]
5	R0664 205 00	0.03
8	R0664 208 00	0.11
12	R0664 212 00	0.14
16	R0664 216 00	0.20
20	R0664 220 00	0.27
25	R0664 225 00	0.32
30	R0664 230 00	0.56
40	R0664 240 00	0.87
50	R0664 250 00	1.78
60	R0664 260 00	3.26

Shaft	Part numbers	Mass
Ød	with series 618 deep grooved ball bearings	
[mm]		[kg]
5	R0663 205 00	0.02
8	R0663 208 00	0.06
12	R0663 212 00	0.08
16	R0663 216 00	0.11
20	R0663 220 00	0.15
25	R0663 225 00	0.17
30	R0663 230 00	0.35
40	R0663 240 00	0.49
50	R0663 250 00	1.29
60	R0663 260 00	2.39
80	R0663 280 00	5.35

Dimensions

	Dir	nensions		Load capacities ³⁾ [N]		
Ød	D	D ₁	А	В	dyn. C	stat. C ₀
5	21	12 ¹⁾	5	22	180	140
8 ²⁾	32	20	7	25	320	240
12	37	25	7	30	480	420
16	42	30	7	34	720	620
20	47	35	7	38	1020	870
25	52	40	7	45	1630	1360
30	65	50	7	54	2390	1960
40	78	60	10	66	3870	3270
50	95	75 ¹⁾	10	100	8260	6470
60	115	90 ¹⁾	13	125	11500	9160
80	150	120 ¹⁾	16	165	21000	16300

	Dim	nensions [Load capa	acities ³⁾ [N]	
Ød	D	D ₁	А	В	dyn. C	stat. C ₀
5	28	12 ¹⁾	8	22	180	140
82)	42	20	12	25	320	240
12	47	25	12	30	480	420
16	55	30	13	34	720	620
20	62	35	14	38	1020	870
25	68	40	15	45	1630	1360
30	80	50	16	54	2390	1960
40	95	60	18	66	3870	3270
50	115	75 ¹⁾	20	100	8260	6470
60	140	90 ¹⁾	24	125	11500	9160

¹⁾ Oversized

 $^{\rm 2)}\,{\rm A}$ spacer sleeve is located between the ball bearing and the Standard Linear Bushing.

³⁾ The figures given for load capacity are minimum values as the position and load direction cannot be precisely defined.

The figures for dynamic load-carrying capacity have been calculated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the 'C' figures in the tables opposite must be multiplied by a factor of 1.26.

Sealing:	The linear bushings are sealed at both ends. Series R0663: If the deep groove ball bearings are to be sealed with shaft sea please request table 06/060-00.					
	Series R0664:	In all sizes the deep groove ball bearings are maintenance-free with shields at both ends.				
Recommended tolerances	Housing bore D ^K Other tolerance	nd R0664: Shaft: d _{h6} ⁱ⁶ or D ^{K7} zones may be selected for special purposes friction bearing manufacturer's mounting recommendations).				

Shoft

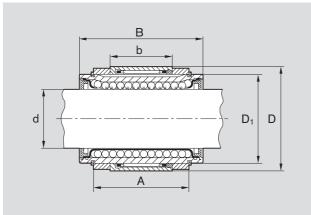
Maga

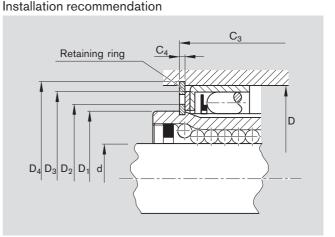
Linear Bushings for combined linear and rotary motion

Linear Bushings for combined linear and rotary motion, R0665 with needle roller bearings without wiper seal

Linear Bushings for combined linear and rotary motion, R0667 with needle roller bearings with wiper seal

Structural design


- Standard Linear Bushing (closed type)
- Needle roller bearings
- Steel spacer rings
- · Retaining rings



Shaft	Part nu	mbers	IVIass
Ød	with two seals	without seals	
[mm]			[kg]
5	R0667 005 00	R0665 005 00	0.02
8	R0667 008 00	R0665 008 00	0.04
12	R0667 012 00	R0665 012 00	0.08
16	R0667 016 00	R0665 016 00	0.10
20	R0667 020 00	R0665 020 00	0.20
25	R0667 025 00	R0665 025 00	0.34
30	R0667 030 00	R0665 030 00	0.56
40	R0667 040 00	R0665 040 00	1.39
50	R0667 050 00	R0665 050 00	2.18
60	R0667 060 00	R0665 060 00	4.14
80	R0667 080 00	R0665 080 00	7.11

Port numbero

Dimensions

				Dir	nensions	[mm]					Retaining ring 4)	Load capa	cities ⁵⁾ [N]
Ød	D	D ₁	b	А	В	D_2	D_3	D_4	C ₃	C ₄		dyn. C	stat. C ₀
								H11	H13	H13			
5 ¹⁾	19	12	12	12	22	13.8	-	19.5	14.6	1.3	SB19	180	140
81)	24	16	13	14.1	25	19.3	23	24.8	16.5	1.3	SB24	320	240
12	30	22	16	20	32	24.2	28	31	23.2	1.6	SB30	420	280
16	34	26	20	22.1	36	28.4	32	35	25.3	1.6	SB34	580	440
20	42	32	20	28	45	35.1	40	43.2	31.2	1.6	SB42	1170	860
25	50	40	30	40	58	43.1	48	51.2	43.2	1.6	SB50	2080	1560
30	57	47	30	48	68	49.1	55	58.5	51.2	1.6	SB57	2820	2230
40 ²⁾	80	62.1 ³⁾	56	56	80	74.2	-	81.8	60.2	2.2	SB80	5170	3810
50 ²⁾	92	75	70	73.1	100	80.6	90	94	78.3	2.7	SB92	8260	6470
60 ²⁾	110	90	70	95	125	95	108	112.3	100.2	2.7	SB110	11500	9160
802)	140	120	81.6	125	165	128	138	122.3	130.2	2.7	SB140	21000	16300

¹⁾ With plastic ball retainer

²⁾ Contrary to the illustration, these sizes have two needle roller bearings.

³⁾ The basic body is a special version of the closed standard Linear Bushing.

⁴⁾ Seeger-Orbis GmbH

⁵⁾ The figures given for load capacity are minimum values as the position and load direction cannot be precisely defined.

The figures for dynamic load-carrying capacity have been calcu-lated assuming a nominal travel of 100,000 m. For a nominal travel of 50,000 m, the 'C' figures in the tables opposite must be multiplied by a factor of 1.26.

Recommended tolerances

Shaft d_{h6} Housing bore D^{K6} bzw. D^{K7} In special circumstances, another Tolerance can be specified (refer to the anti-friction bearing manufacturer's mounting recommendation) For axial adjustment of the needle roller bearings in the housing, see installation recommendation. The installation of the needle roller bearings in the housing without additional axial adjustment is sufficient for many applications.

The Advantages

- Induction hardened and ground
- Solid or tubular shafts
- Available in various tolerances
- Available in heat-treated steel, corrosion-resistant steel or hard chromium plated steel
- Cut to customer specified lengths
- With chamfers to protect the Linear Bushing seal
- Completed per customer design
- As a guidance shaft for Linear Bushings
- As rollers, pistons and axles

Overview

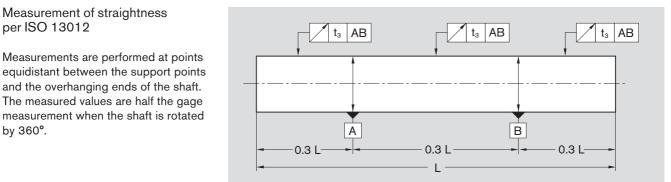
Measurements

Shaft			Part nu	Imbers				
Ød	Solid shafts							
	Heat-trea	ated steel	X460	Cr13	X90CrMoV18			
[mm]	h6	h7	h6	h7	h6	h7		
3	R1000 003 00				R1000 003 20			
4	R1000 004 00	R1000 004 01	R1000 004 30	R1000 004 31				
5	R1000 005 00	R1000 005 01	R1000 005 30	R1000 005 31				
6	R1000 006 00	R1000 006 01	R1000 006 30	R1000 006 31				
8	R1000 008 00	R1000 008 01	R1000 008 30	R1000 008 31				
10	R1000 010 00	R1000 010 01	R1000 010 30	R1000 010 31				
12	R1000 012 00	R1000 012 01	R1000 012 30	R1000 012 31	R1000 012 20	R1000 012 21		
14	R1000 014 00	R1000 014 01	R1000 014 30	R1000 014 31				
15	R1000 015 00	R1000 015 01						
16	R1000 016 00	R1000 016 01	R1000 016 30	R1000 016 31	R1000 016 20	R1000 016 21		
18	R1000 018 00	R1000 018 01						
20	R1000 020 00	R1000 020 01	R1000 020 30	R1000 020 31	R1000 020 20	R1000 020 21		
22	R1000 022 00	R1000 022 01						
24	R1000 024 00	R1000 024 01						
25	R1000 025 00	R1000 025 01	R1000 025 30	R1000 025 31	R1000 025 20	R1000 025 21		
30	R1000 030 00	R1000 030 01	R1000 030 30	R1000 030 31	R1000 030 20	R1000 030 21		
32	R1000 032 00	R1000 032 01						
35	R1000 035 00	R1000 035 01						
38	R1000 038 00	R1000 038 01						
40	R1000 040 00	R1000 040 01	R1000 040 30	R1000 040 31	R1000 040 20	R1000 040 21		
45	R1000 045 00	R1000 045 01						
50	R1000 050 00	R1000 050 01	R1000 050 30	R1000 050 31	R1000 050 20	R1000 050 21		
55	R1000 055 00	R1000 055 01						
60	R1000 060 00	R1000 060 01	R1000 060 30	R1000 060 31	R1000 060 20	R1000 060 21		
70	R1000 070 00	R1000 070 01						
80	R1000 080 00	R1000 080 01	R1000 080 30	R1000 080 31	R1000 080 20	R1000 080 21		
100	R1000 100 00	R1000 100 01						
110	R1000 110 00	R1000 110 01						

Shaft			Part numbers						
Ød	Solid	Shaft	Tubular shaft						
	Hard chror	nium plating	Heat-trea	ted steel	Hard chromium plating				
[mm]	h6	h7	h6	h7	h7				
3									
4									
5									
6									
8			R1001 008 10						
10			R1001 010 10						
12	R1000 012 60	R1000 012 61	R1001 012 10	R1001 012 11					
14									
15									
16	R1000 016 60	R1000 016 61	R1001 016 10						
18									
20	R1000 020 60	R1000 020 61	R1001 020 10	R1001 020 11					
22									
24									
25	R1000 025 60	R1000 025 61	R1001 025 10	R1001 025 11	R1001 025 41				
30	R1000 030 60	R1000 030 61	R1001 030 10	R1001 030 11	R1001 030 41				
32									
35									
38									
40	R1000 040 60	R1000 040 61	R1001 040 10	R1001 040 11	R1001 040 41				
45									
50	R1000 050 60	R1000 050 61	R1001 050 10	R1001 050 11	R1001 050 41				
55									
60	R1000 060 60	R1000 060 61	R1001 060 10	R1001 060 11	R1001 060 41				
70									
80	R1000 080 60	R1000 080 61	R1001 080 10	R1001 080 11	R1001 080 41				
100			R1001 100 10	R1001 100 11					
110									

Technical Data

Dimensional accuracy and tolerance zones


The diameters of Precision Steel Shafts are accurate to within the tolerance zones h6 and h7. Details on the dimensional accuracy of the shafts are compiled in the tables on the right. The tolerance for the diameter of softannealed shaft sections may go slightly beyond the tolerance zones quoted.

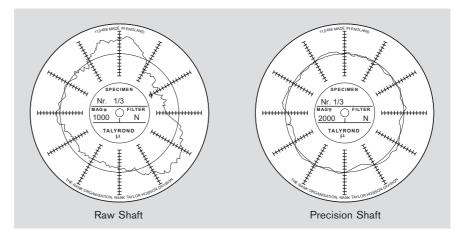
By request: Precision Steel Shafts may also be supplied in tolerance zone h5 (standard diameters 30 to 80 only). For special diameter tolerances, please consult us.

	t ₁		7) t ₂		Ţ-Ē	— t ₃ /	1000	_
d									
N			0	0	10	10	0.0	50	0.0
Nominal diameter d [mm]	over	1	3	6	10	18	30	50	80
	to	3	6	10	18	30	50	80	120
Diameter tolerance [µm]	h6	0	0	0	0	0	0	0	0
		-6	-8	-9	-11	-13	-16	-19	-22
	h7	0	0	0	0	0	0	0	0
		-10	-12	-15	-18	-21	-25	-30	-35
Roundness t ₁ [µm]	h6	3	4	4	5	6	7	8	10
	h7	4	5	6	8	9	11	13	15
Taper t ₂ ¹⁾ [µm]	h6	4	5	6	8	9	11	13	15
	h7	6	8	9	11	13	16	19	22
Straightness t ₃ 2) [µm/m]		150	150	120	100	100	100	100	100
Surface roughness (Ra) ³⁾ [µ	ım]	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32

¹⁾ Dial gauge reading during straightness measurement. For lengths of less than 1 m the lowest possible value is 40 µm. This corresponds to a straightness tolerance of 20 µm.

²⁾ Applies to shafts made of heat-treatable or anti-friction bearing steel only. Please contact us for surface finish and surface roughness (R_a) tolerances for hard chrome plated and corrosion-resistant steel shafts.

Measurement of roundness The drawing shows the roundness of a raw shaft in comparision to a precision steel shaft.

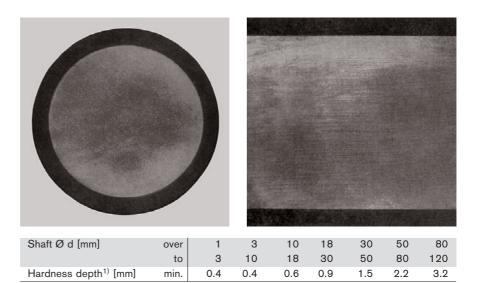

Measurement of straightness

Measurements are performed at points

and the overhanging ends of the shaft. The measured values are half the gage measurement when the shaft is rotated

per ISO 13012

by 360°.



Shaft hardness

The surface of the shaft is inductionhardened to a depth of at least 0.4 up to 3.2 mm. depending on the shaft diameter. Surface hardness and depth of hardness are extremely uniform. both in the axial and in the circumferential direction. This is the reason for the excellent dimensional consistency and the long service life of Precision Steel Shafts.

The photographs opposite show a longitudinal and a transverse section through a hardened and ground Precision Steel Shaft. The hardened surface zone has been

made visible by caustic etching.

¹⁾ Please contact us to obtain the depth of hardness for corrosion-resistant steel shafts.

Minimum hardness Solid and tubular shafts \rightarrow HRC 60

The graphic shows the micro-structure in the surface zone of a shaft cross section (magnification approx. 10x). The hardened outer layer of martensite and the smooth transition to the tough inner core structure are clearly visible.

Induction hardened surface zone Structure: Martensite hardness ≥ HRC 60 (Rockwell C)

Transitional structure: Martensite Troostite Pearlite

Core structure: Pearlite and ferrite

Technical Data

Shaft deflection

When steel shafts are used as linear motion guideways for linear bushings it is important that the shaft deflection occurring ander load is kept within certain limits, as otherwise the proper functioning and the service life of the assembly could be impaired¹.

To facilitate the determination of shaft deflection by calculation, we have compiled the most common load cases together with the associated deflection equations in the table below.

The equations for calculation of the inclination of the shaft in the linear bushing (tan a) can also be taken from this table.

Case No.	Loading conditions	Deflection equation	Shaft inclination in linear bushings
1		$f_{1} = \frac{F \cdot a^{3}}{6 \cdot E \cdot J} \cdot \left(2 - \frac{3 \cdot a}{I}\right)$ $f_{m1} = \frac{F \cdot a^{2}}{24 \cdot E \cdot} \int (3I - 4a)$	$\tan \alpha_{(x=a)} = \frac{F \cdot a^2 \cdot b}{2 \cdot E \cdot J \cdot I}$
2		$f_2 = \frac{F \cdot ^3}{2 \cdot E \cdot J} \cdot \frac{a^2}{l^2} \cdot \left(1 - \frac{4}{3} \cdot \frac{a}{l}\right)$ $f_{m2} = \frac{F \cdot ^3}{8 \cdot E \cdot J} \cdot \frac{a}{l} \cdot \left(1 - \frac{4}{3} \cdot \frac{a^2}{l^2}\right)$	$\tan \alpha_{(x=a)} = \frac{F \cdot a \cdot b}{2 \cdot E \cdot J}$
3		$f_{3} = \frac{F \cdot ^{3}}{3 \cdot E \cdot J} \cdot \frac{a^{3} \cdot b^{3}}{ ^{3} \cdot ^{3}}$ $f_{m3} = \frac{2 \cdot F \cdot ^{3}}{3 \cdot E \cdot J} \cdot \frac{a^{3}}{ ^{3}} \cdot \frac{b^{2}}{ ^{2}} \left(\frac{I}{1+2a}\right)^{2}$	$\tan \alpha_{(x=b)} = \frac{F \cdot a^2 \cdot b^2}{2 \cdot E \cdot J \cdot l^2} \cdot \left(1 - \frac{2 \cdot b}{l}\right)$
4		$f_4 = \frac{F \cdot I^3}{3 \cdot E \cdot J} \cdot \frac{a^2 \cdot b^2}{I^2 \cdot I^2}$ $f_{m4} = f_4 \cdot \frac{I + b}{3 \cdot b} \sqrt{\frac{I + b}{3 \cdot a}}$	$\tan \alpha_{(x=b)} = \frac{F \cdot a}{6 \cdot E \cdot J \cdot I} (3b^2 - l^2 + a^2)$
5		$f_5 = \frac{5 \cdot F \cdot I^3}{384 \cdot E \cdot J}$	$\tan \alpha_{(x=0)} = \frac{F \cdot I^2}{24 \cdot E \cdot J}$

¹⁾ There will be no loss of load-carrying capacity or service life in Super Linear Bushings **a**, **a** and **a** provided the shaft deflection does not exceed 30' (tan 30' = 0.0087).

_

_ _

_

_

_ _

_

_

_

=

=

The table gives the values for the maximum permissible shaft inclination $(\tan a_{max})$ for each size of Standard Linear Bushing.

At tan $a = tan \; a_{\mbox{\tiny max}}$ the permissible static load capacity is approx. 0.4 Co.

Shaft	tan α_{max}
Ød	
[mm]	
5	12.3 · 10 ⁻⁴
8	10.0 · 10 ⁻⁴
12	10.1 · 10 ⁻⁴
16	8.5 · 10 ⁻⁴
20	8.5 · 10 ⁻⁴
25	7.2 · 10 ⁻⁴

Shaft	tan α _{max}
Ød	max
[mm]	
30	6.4 · 10 ⁻⁴
10	EO 10 1
40	7.3 · 10 ⁻⁴
50	6.3 · 10 ⁻⁴
60	5.7 · 10 ⁻⁴
00	5.7 * 10
80	$5.7 \cdot 10^{-4}$

Values for E x J and mass for steel shafts

Solid Shafts						
Ød	ExJ	Mass				
[mm]	[N x mm ²]	[kg/m]				
3	$8.35 \cdot 10^{5}$	0.06				
4	2.64 · 10 ⁶	0.10				
5	6.44 · 10 ⁶	0.15				
8	$4.22 \cdot 10^{7}$	0.39				
10	1.03 · 10 ⁸	0.61				
12	2.14 · 10 ⁸	0.88				
14	3.96 · 10 ⁸	1.20				
16	6.76 · 10 ⁸	1.57				
20	1.65 · 10 ⁹	2.45				
25	4.03 · 10 ⁹	3.83				
30	8.35 · 10 ⁹	5.51				
40	2.64 · 10 ¹⁰	9.80				
50	6.44 · 10 ¹⁰	15.32				
60	1.34 · 10 ¹¹	22.05				
80	4.22 · 10 ¹¹	39.21				

Tubular shafts								
Shaft	diameter	ExJ	Mass					
outer	Inner							
[mm]	[mm]	[N x mm ²]	[kg/m]					
8	3	$4.14 \cdot 10^{7}$	0.34					
10	4	1.00 · 10 ⁸	0.51					
12	3.4	2.12 · 10 ⁸	0.81					
16	8	6.33 · 10 ⁸	1.18					
20	14	1.25 · 10 ⁹	1.25					
25	14	3.63 · 10 ⁹	2.63					
30	19	7.01 · 10 ⁹	3.30					
40	26.5	$2.13 \cdot 10^{10}$	5.50					
50	29.6	$5.65 \cdot 10^{10}$	9.95					
60	36.5	$1.15 \cdot 10^{11}$	13.89					
80	57.4	3.10 · 1011	19.02					

Calculation values: Modulus of elasticity Seals

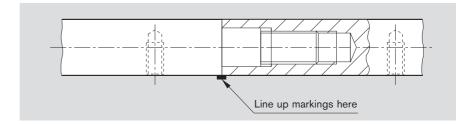
 $2.1\cdot\,10^5\,N/mm^2$ 7.8 g/cm³

Technical Data

Mill-cut lengths

Type of shafts	Diameter [mm]	Mill-cut length ¹⁾ [m]
Solid Shafts ²⁾	3	0.4
	4 to 8	3.6
	ab 10	6.1
Tubular shafts	8 and 10	1
	16	2
	20	5.7
	12 and up to 25	6.1
Corrosion-resistant	3	0.4
steel shafts	4 to 10	3.6
	up to 12	6.1

¹⁾ The first 50 mm at each end of mill-cut lengths may deviate slightly from the nominal diameter.


 $^{\rm 2)}$ Solid shafts of lenghts up to 8 m and Ø 20 and over are available upon request.

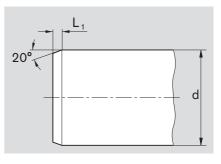
We can supply composite shafts for applications requiring a shaft longer than the mill-cut lengths available. The shaft sections are joined together by a spigot-and-recess arrangement, one section having a locating plug and the other a mating hole (see figure below). The joined shaft must rest on a full-length, continuous support rail or must at least be supported at regular intervals with one of the supports located at the joint between the shaft sections (see "Shaft Support Rails").

At the customer's request, the plug can be threaded and the mating hole tapped (see figure below). Line-up markings are then provided at the ends of the mating shaft sections to facilitate vertical alignment of the radial holes for attachment of the coupled shaft assembly to the shaft support rail.

All machining and marking operations are carried out on the shaft sections after they have been hardened and groand. Since it will not be possible to re-grind the finished joint, extreme care is taken in the machining of the centering arrangement to ensure precision mating of the shaft sections.

Composite shafts Plug-and-socket joints

Shafts with threaded joints (does not apply to corrosionresistant steel shafts)


Shaft Machining

Chamfers

Machining

Steel shafts intended for use as linear motion guideways for Linear Bushings must be chamfered at the ends to prevent damage to the ball retainers or wipers when the linear bushing is being pushed onto the shaft. The figure and the table give the dimensions of the chamfers required. Linear bushings with seals must not be

pushed over sharp edges in the shaft (e.g. retaining ring grooves), as this would damage the seal lips.

Shaft Ø d	[mm]	3	4	5	8	10	12	14	16	20	25	30	40	50	60	80
Length of Chamfer L ₁	[mm]	1	1	1.5	1.5	1.5	2	2	2	2	2	2	3	3	3	3

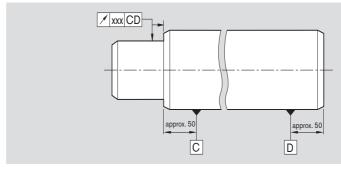
Hardened and gound steel shafts in mill-cut lengths are always in stock. These can be cut to any desired length and machined to have any of the following characteristics:

- Reduced diameter ends
- Male or female threads
- Countersinks

- Radial or axial holes
- Recesses
- or other specialily machined features.

Machined shafts may have to be annealed due to the hardened outer zone (slight measurement change possible)

> Dimensions [mm] Length Tolerance to 400 ±0.5 over 400 ±0.8 to 1000 over 1000 ±1.2 to 2000 over 2000 ±2.0 to 4000 over 4000 ±3.0 to 6000 over 6000 ±3.5 to 8000


Steel shafts with closer length tolerance can also be supplied at a surcharge.

Round and flat run of the reduced diameter end

Annealing of machined sections

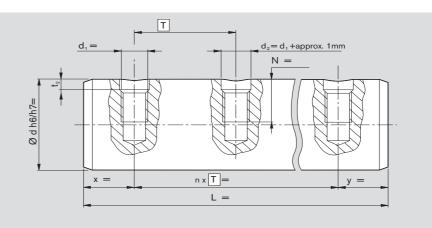
Length tolerances for cut-to-size shafts

Customers can request a trial to accomplish these values as shown. Values xxx < 0.02 upon request.

Shaft Machining

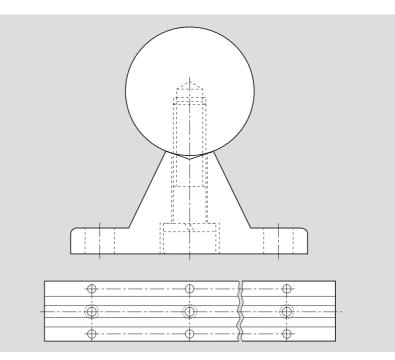
Advantages

- Many processing options
- Shorter delivery times
- Lower cost

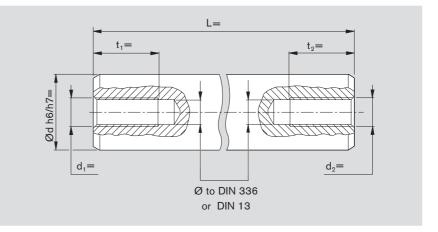

Shafts with radial holes, drilled or drilled and tapped

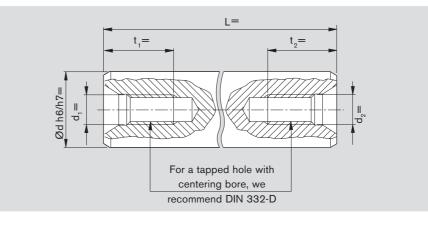
Shafts that have to be supported require radial holes for attachment of the shaft supports. The radial holes are drilled into the steel shafts after hardening and grinding. The diameter, depth and spacing of the holes depend on the diameter of the shaft. Refer to the table in the sections "Shaft Support Rails for Standard and Super Linear Bushings" and "Shaft Support Rails for Radial Linear Bushings" for standard dimensions.

Recommended values for boring of clearing holes in the hardened surface zone


Ordering

- Inquiries with customer design or template
- Registered dimensions and tolerances
- Avoid oversizing
- Machining on one or both sides

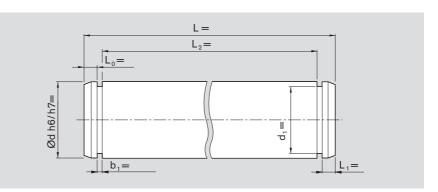

	Dimensions [mm	1]		Dimensions [mr	n]
Ød	d ₁	t ₂	Ød	d ₁	t ₂
12	M4	2.5	50	M12	4.0
16	M5	2.5	50	M14	4.5
20	M6	3.0	50	M16	5.0
25	M8	3.0	60	M14	5.5
30	M10	3.5	60	M20	6.5
40	M10	4.0	80	M16	5.5
40	M12	4.5	80	M24	6.5

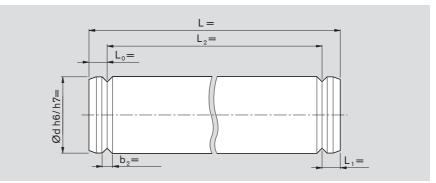

Values for corrosion-resistant steel shafts upon request.

For matching Shaft Support Rails, see the related chapter.

Shaft ends with tapped hole

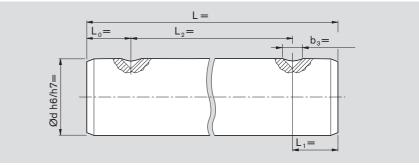
Shaft ends with tapped hole and centering bore to DIN 332-D

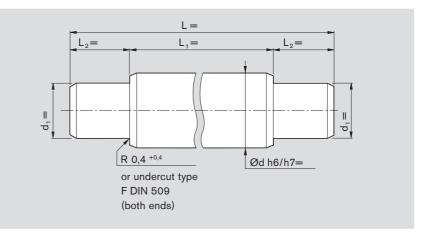

Recommended dimension for shaft ends with tapped hole and centering bore.

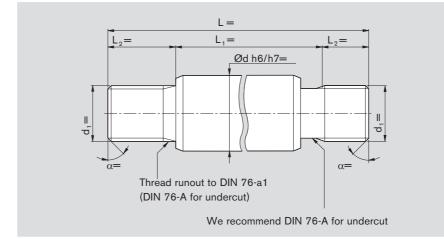

Shaft	Thread	Depth
Ød	d ₁ /d ₂	t ₁ /t ₂
[mm]		[mm]
8	M4	10
10	M4	10
12	M5	12.5
14	M5	12.5
16	M6	16
20	M8	19
25	M10	22
30	M12	28
40	M12	28
50	M16	36
60	M20	42
80	M24	50

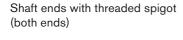
0

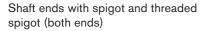
Shaft Machining

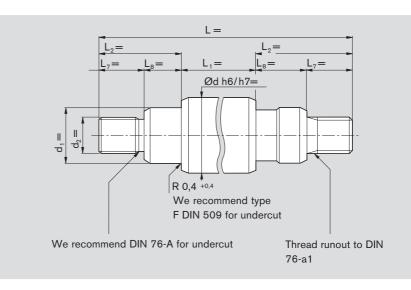

Shaft ends for retaining ring groove to DIN 471

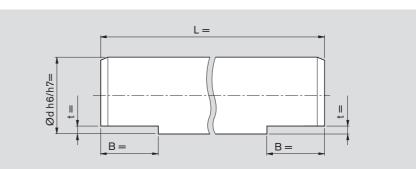

Shaft ends with 90° cutout

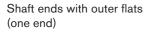

Shaft ends with 90° countersink

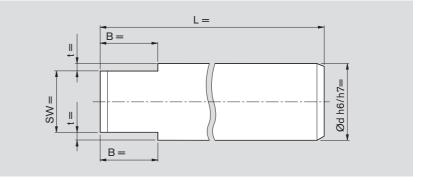


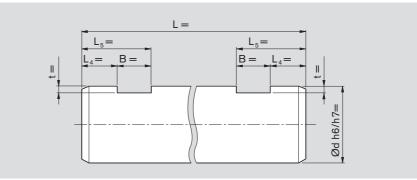

	I	Dimension [mm]			Retaining I	ring DIN 471-
Ød	b ₁	d ₁	b ₂	b ₃	Dimension [mm]	Part number
	+0.1					
4	0.5	3.8 -0.04	-	-	4x0.4	R3410 765 00
5	0.7	4.8 -0.04	2	3	5x0.6	R3410 742 00
8	0.9	7.6 -0.06	2	4	8x0.8	R3410 737 00
10	1.1	9.6 -0.11	2	5	10x1	R3410 745 00
12	1.1	11.5 -0.11	2.5	5	12x1	R3410 712 00
14	1.1	13.4 -0.11	2.5	5	14x1	R3410 747 00
16	1.1	15.2 -0.11	3	5	16x1	R3410 713 00
20	1.3	19 -0.13	3	5	20x1.2	R3410 735 00
25	1.3	23.9 -0.21	4	6	25x1.2	R3410 750 00
30	1.6	28.6 -0.21	4	6	30x1.5	R3410 724 00
40	1.85	37.5 -0.25	5	8	40x1.75	R3410 726 00
50	2.15	47 -0.25	5	8	50x2	R3410 727 00
60	2.15	57 -0.3	6	8	60x2	R3410 764 00
80	2.65	76.5 -0.3	6	10	80x2.5	-


Dimensional recommendation for shaft ends for retaining ring, 90° shaft ends, 90° countersink: Shaft ends with spigot both ends

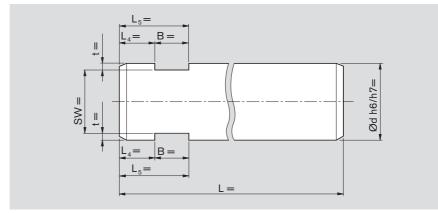


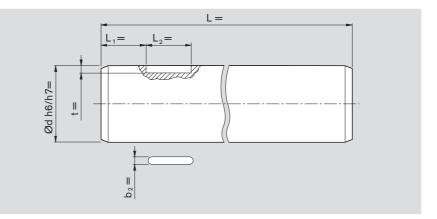



0


Shaft Machining

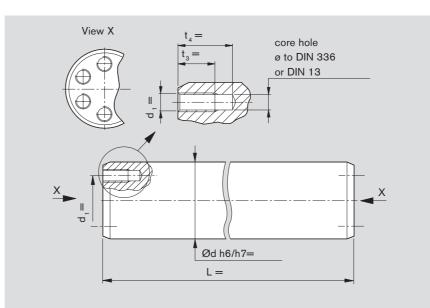
Shaft ends with single flat (both ends)




Shaft ends with grooves

(both ends)

Shaft ends with inner flats (one end)


Spring groove to DIN 6885-1

Dimensional recommendation:

Dimensions [mm]		
Ød	b ₂	t
	P9	
8	2	1.2 +0.1
10	3	1.8 +0.1
12	4	2.5 +0.1
14	5	3 +0.1
16	5	3 +0.1
20	6	3.5 +0.1
25	8	4 +0.2
30	8	4 +0.2
40	12	5 +0.2
50	14	5.5 +0.2
60	18	7 +0.2
80	22	9 +0.2

Shaft ends with holes tapped to pitch circle (both ends)

0

Precision steel shafts

Ordering data

Solid shafts made of heat-treated steel

When a shaft forms an integral part of an anti-friction bearing system, the materials used have to satisfy exacting requirements.

Rexroth offers the optimum shaft material for each diameter range. The materials we use have a much higher carbon content compared to frequently used massproduced steels, which has a very positive influence on the achievable surface hardness and provides better resistance to aging.

The exceptionally uniform surface hardness and hardening depth of Rexroth shafts, combined with an excellent degree of purity, homogeneous microstructure and defined grain sizes, ensure particularly long service life ander rolling loads.

Available diameters [mm]	Ø d [mm]	Lengths [m]
3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22,	3	0.4
24, 25, 30, 32, 35, 38, 40, 45, 50, 55, 60,	4 - 8	3.6
70, 80, 100, 110	10 - 110	6.1

Solid shafts from 20 mm in diameter and up to 8 m in length are available upon request. Greater overall lengths are composed of sections joined end-to-end. Linear Bushing can roll over joints without any problems.

Materials	Hardness	
Cf 53, Cf 60, Ck 67	min. 60 HRC	Ordering example:
		Solid Shaft Ø 25 h7 out of heat-treated
Part numb	oers	steel.
Tolerance h6	R1000 xxx 00	Length: 460 mm
Tolerance h7	R1000 xxx 01	Part number:
xxx = Diameter in mm		R1000 025 01, 460 mm
Tolerance h6 Tolerance h7	R1000 xxx 00	steel. Length: 460 mm Part number:

Corrosion-resistant solid steel shafts to ISO 683-17 / EN 10088

The correct choice for applications requiring high corrosion resistance in a clean environment, e.g. in the food industry, semiconductor manufacturing and medical engineering.

X 90 CrMoV 18 differs from X 46 Cr 13 in that it is additionally resistant to lactic acid.

Materials	Available diameters [mm]	
X 46 Cr 13	4, 5, 6, 8, 10, 12, 14, 16, 20, 25, 30, 40, 50, 60, 80	
X 90 CrMoV 18	3, 12, 16, 20, 2	25, 30, 40, 50, 60, 80
	<u>.</u>	
Ø d [mm]	Lengths [m]	Greater overall lengths are composed
3	0.4	of sections joined end-to-end. Linear
4-10	3.6	Bushing can roll over joints without any
12-80	6.1	problems.
	•	-
Materials	Hardness	
X 46 Cr 13	min. 54 HRC	
X 90 CrMoV 18	min. 55 HRC	-
		-
Part numbe	rs X 46 Cr 13	Ordering example:
Tolerance h6	R1000 0xx 30	Solid shaft Ø 16 h6 our of corrosion-
Tolerance h7	R1000 0xx 31	resistant steel X 46 Cr 13.
		Length: 350 mm
Part numbers	X 90 CrMoV 18	Part number:
Tolerance h6	R1000 0xx 20	R1000 016 30, 350 mm
Tolerance h7	R1000 0xx 21	-

xx = Diameter in mm

Solid steel shafts with hardchromium plating

Optimum anti-corrosion protection for applications in chemically aggressive environments.

Available diameter [mm]	
12, 16, 20, 25, 30, 40, 50, 60, 80	

Ø d [mm]	Lengths [m]
12	5.5
16, 20	6.5
25 - 80	7

Greater overall lengths are composed of sections joined end-to-end. Rexroth Linear Bushings can roll over joints without any problems.

Materials	Hardness
Cf 53, Cf 60, Ck 67	min. 60 HRC (approx. 700 HV)
Chrome plating (Thickness approx. 10 µm)	approx. 1000 HV

Part numbers		
Tolerance h6	R1000 0xx 60	
Tolerance h7	R1000 0xx 61	
xx = Diameter in mm		

Ordering example: Solidshaft Ø 30 Hard chromium plating h7, Length 480 mm Part number: R1000 030 61, 480 mm

Tubular shafts are conductive and can transport liquids and gasses. Tubular shafts are also often used for weight reduction. The material is smoothly rolled. The interior diameters are rough.

Available diameter [mm]		
outer	inner (approx.)	
8	3	
10	4	
12	3.4	
16	8	
20	14	
25	14	
30	19	
40	26.5	
50	29.6	
60	36.5	
80	57.4	
100	65	

Part numbers

Tolerance h6

Tolerance h7

xxx = Outer diameter in mm

Ø d [mm]	Lengths max. [m]
8. 10	1
16	2
20	5.7
12 and 25 - 100	6.1
12 414 20 100	5.1

Materials	Hardness
Ck 60	min. 60 HRC

	Ordering example:
rs	Tubular shaft Ø 80 h7
R1001 xxx 10	Length 3600 mm
R1001 xxx 11	Part number:
1	R1001 080 11. 3600

The outer diameter of tubular shafts are hard-chromium plated.

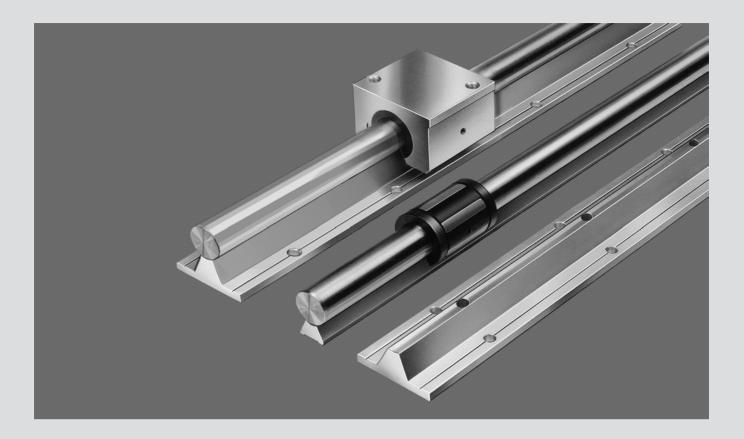
Available diameter [mm]		
outer	inner	
25	14	
30	19	
40	26.5	
50	29.6	
60	36.5	
80	57.4	

Part numbers		
Tolerance h7	R1001 0xx 41	
xx = Outer diameter mm	1	

Hardness	
min. 60 HRC (approx. 700 HV)	
approx. 1000 HV	
	min. 60 HRC (approx. 700 HV)

mm

Ordering example: Tubular shaft Ø 40. Hard chromium plating h7. Length 2000 mm Part number: R1001 040 41, 2000 mm


Heat-treated tubular steel shafts

Tubular shafts, hard chromium plating

Steel shafts with ready-mounted shaft supports, Shaft supports

The Advantages

- For long guides or high loads that do not permit the use of a freestanding shaft due to shaft deflection
- Unlimited length possible using shafts with socket connections
- Suitable supports for different Linear Bushing types and operating requirements
- Increased degree of freedom in circumferential direction compared to profiled guide rails
- For applications where linear guides would be subjected to tensional forces caused by inaccurate sub-structures

Shaft support rails with ready-mounted steel shafts

Selection guide

	R1010	R1025	R1014	R1011	R1015
	Ree				000
Frequency of use	+++	+++	+++	+++	++
Low cost	+++	+++	++	++	++
For super and standard Linear Bushings	+++	+++	+++	+++	+++
High precision	++	++	+++	+++	+++
For high loads	++	++	+++	+++	+++
Flanged small height	+++	+++	+++	0	0
Flanged large height	0	0	0	+++	0
Flangeless underside attachment	0	0	0	0	0
For side mounting	0	0	0	0	+++
For Aluminum extrusion	0	+++	0	0	0
Aluminum shaft support	+++	+++	+++	+++	+++
Steel shaft support	0	0	0	0	0
With corrosion-resistant shaft ¹⁾	+++	+++	+++	+++	+++

V

	R1013	R1016	R1018	R1020	R1012
	2		Qoo		
Frequency of use	++	++	+	+	+
Low cost	+++	++	+	+	+
For super and standard Linear Bushings	+++	+++	0	0	0
High precision	++	+++	+++	+++	+++
For high loads	+++	+++	+++	+++	+++
Flanged small height	0	0	++	0	+++
Flanged large height	0	0	0	0	0
Flangeless underside attachment	+++	+++	0	0	0
For side mounting	0	0	0	+++	0
For Aluminum extrusion	0	0	0	0	0
Aluminum shaft support	+++	0	0	0	0
Steel shaft support	0	+++	+++	+++	+++
With corrosion-resistant shaft ¹⁾	+++	+++	+++	+++	+++

¹⁾ Available corrosion protection:

Hard-chromium plated shaft Material X46Cr13 Material X90CrMoV18

+++ Extremely well suited

++ Well suited

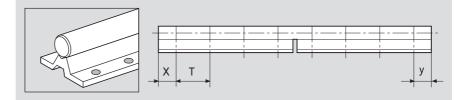
+ Suited

o Not recommended

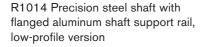
y

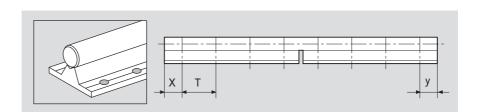
Shaft support rails with ready-mounted steel shafts

1. General

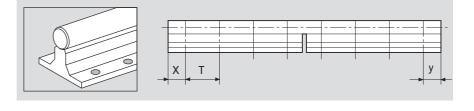

The individual support rails are arranged end to end underneath the corresponding shafts. Once the elements have been aligned and the linear motion assemblies screwed down onto a torsionally stiff, surface-machined base, the units will reflect the tolerances as given in the tables.

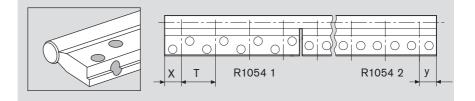
2. Part numbers

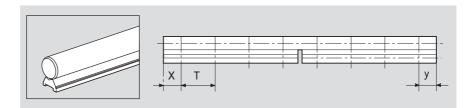

R1010 Precision steel shaft with flanged aluminum shaft support rail, low profile version, greater height tolerance, very economically priced


2.1 For use with open-type Standard and Super Linear Bushings

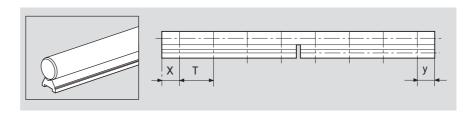
X T

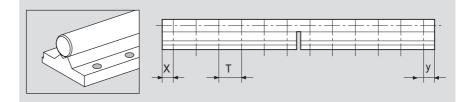

R1025 same as R1010 but with drilling distance for alumninum framing



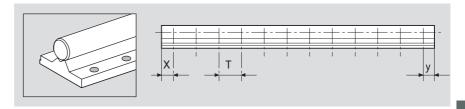

R1011 Precision steel shaft with flanged aluminum shaft support rail, high-profile version

R1015 Precision steel shaft with aluminum shaft support rail, for side mounting




R1013 Precision steel shaft with flangeless aluminum shaft support rail, greater height tolerance (only available ready-mounted)

R1016 Precision steel shaft with flangeless steel shaft support rail (only available ready-mounted)



2.2 For use with Radial Linear Bushings

09 0 ίO 0 0 0 0 0 í ol 0 o 0 0 \circ 0 Ο С х Т

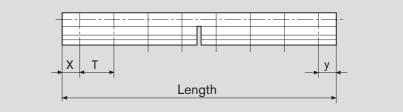
2.3 For use with Radial Compact Sets

R1018 Precision steel shaft with flanged steel shaft support rail

R1020 Precision steel shaft with steel shaft support rail, for side mounting

R1012 Precision steel shaft with special flanged steel shaft support rail for Radial Compact Sets (only available ready-mounted)

Shaft support rails with ready-mounted steel shafts


Assembly, Ordering data, Mounting

End spaces x and y

If the ordered shaft length is a whole multiple of the hole spacing dimension in a shaft support rail, the spaces at the ends of the rail will be half the pitch length (x and y = T/2). For other shaft lengths we make sure the holes are centered over the length (x = y). This is done by cutting off material at both ends of any overhanging shaft support rail. The end spaces x and y should not measure less than 0.2 x T.

If the customer has not supplied a drawing, our proposal and order confirmation will include the hole spacing we have determined for the steel shaft. This then gives the necessary location of the mounting holes in the machine bed. We recommend comparing this data with the machine design documents.

Ordering data: Part number R10.. / Length ... mm / x ... mm / y ... mm

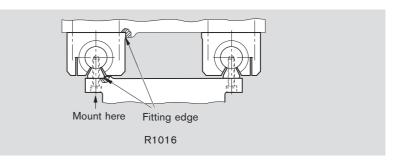
Extra-long and composite linear motion assemblies

A shaft section with mounted shaft support rail should not exceed 6 meters in length. Longer assemblies are composed of a number of sections fitted end to end by plug-type mounting. If the shaft sections are to be screwed together, the shaft support rails will have to be mounted at the customer's facility (see also section on "Composite Shafts").

The arrangement of joints in the shaft and the shaft support rail depends on the type of assembly. Basically, however, the joint in the shaft and the joint in shaft support rail must always be staggered.

Special bore distances

Shafts with ready-mounted shaft supports can also be custom ordered with special bore distances.


Mounting note for flangeless shaft support rails

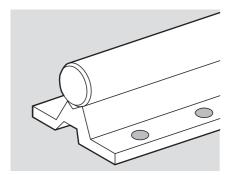
To facilitate mounting and in applications subject to major side loads, we recommend retention by means of a flat retaining strip or a wedge-profile as shown in the illustration below.

The shaft support rail must be carefully aligned for mounting as follows: push the first shaft and shaft support rail up against the fitting edge and screw down; then align the second shaft, preferably with the aid of a straightedge, and screw down.

These elements are supplied only together with Precision Steel Shafts. The maximum length of a support rail is 3000 mm; if longer lengths are required, the rails can be mounted end to end. The fitting edge allows easy alignment of the shaft support rails, thus avoiding any stressing of the linear bushings.

Shaft support rails with ready-mounted steel shafts for open standard and super Linear Bushings

Flanged, low profile version

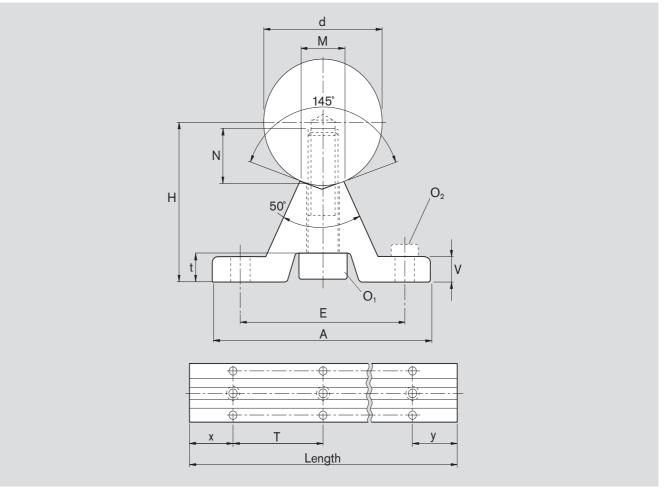

R1010 Steel shaft ready-mounted with shaft supports

Material

Shaft support: Aluminum

Structural Design

- Low overall height Used in conjunction with Linear sets, these shaft support rails make it possible to build linear motion guideways with an extremely low overall height.
- High rigidity
 The shaft bearing surface of the
 support rail is matched to the
 diameter of the mating-size shaft to
 ensure that the shaft bearing
 pressure acts at the optimum angle;
 together with the sturdy mounting
 screws, this guarantees high rigidity.
- Cost-effective use Greater height tolerances permit easy and cost-effective assembly of supported guideways.


Shaft	Part nu		Mass
Ø d [mm]	Drilling hole distance T ₁	Drilling hole distance T ₂	[kg/m]
16	R1010 016	R1010 516	2.5
20	R1010 020	R1010 520	3.8
25	R1010 025	R1010 525	5.4
30	R1010 030	R1010 530	7.6
40	R1010 040	R1010 540	12.6
		T 00 = shaft out of heat-trea 01 = shaft out of heat-trea 30 = shaft out of corrosion 31 = shaft out of corrosion 60 = Shafts out of hard-ch corrosion-resistant s 61 = Shafts out of hard-ch	table steel, h7 I-resistant steel, h6 I-resistant steel, h7 Irromium plating out of teel, h6

corrosion-resistant steel, h7

Ordering example

For a shaft support rail with a shaft of hea-treatable steel (T_1) , 30 mm diameter, 900 mm length, tolerance quality h7:

R1010 030 01 / 900 mm.

					[Dimensio	ns [mm]				
Ød	H ¹⁾	А	V	М	0 ₁	Ν	Е	t	O ₂ ²⁾	Drill hole	distances ³⁾
	±0.1				DIN6912-8.8				DIN6912-8.8	T ₁	T ₂
16	26	45	5	7	M5x20	9	33	6	M5x16	100	150
20	32	52	6	8.3	M6x25	11	37	7	M6x16	100	150
25	36	57	6	10.8	M8x30	15	42	7	M6x16	120	200
30	42	69	7	11	M10x35	17	51	7.5	M8x25	150	200
40	50	73	8	15	M10x40	19	55	7	M8x25	200	300

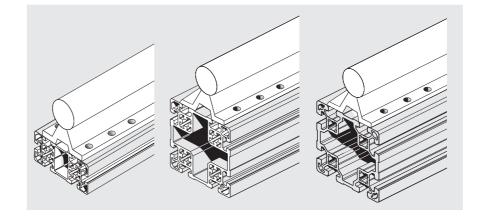
¹⁾ Measured with gauging shaft of nominal diameter d and length approx. 50 mm. Lengths up to 3000 mm with a parallelism of 0.1 mm on request. ²⁾ Applies only to fixing in tapped holes in steel or cast iron.

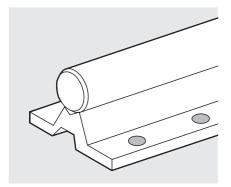
³⁾ T₁: Traverse load of the Linear Bushing opening and approximate utilization of the load capacities.

T₂: For general requirements

Shaft support rails with ready-mounted steel shafts for open standard and super Linear Bushings

For Aluminum Structural Framing


R1025 Shaft support rails with precision steel shaft $^{\mbox{\tiny 1})}$


Material

• Support rail: Aluminum

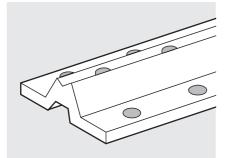
Advantages

- Fast and easy, modular assembly of linear bushings and shafts on aluminum profile systems
- Very cost effective due to restricted height tolerance.

Shaft	Mass with shaft	Part numbers	Mass
Ød	E		
[mm]	[mm]		[kg/m]
25	40	R1025 025	5.4
30	45	R1025 530	7.5
30	50	R1025 030	7.5
		T	

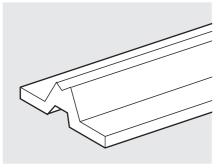
Shafts:

---- 00 = shaft of heat-treatable steel, h6


— 01 = shaft of heat-treatable steel, h7

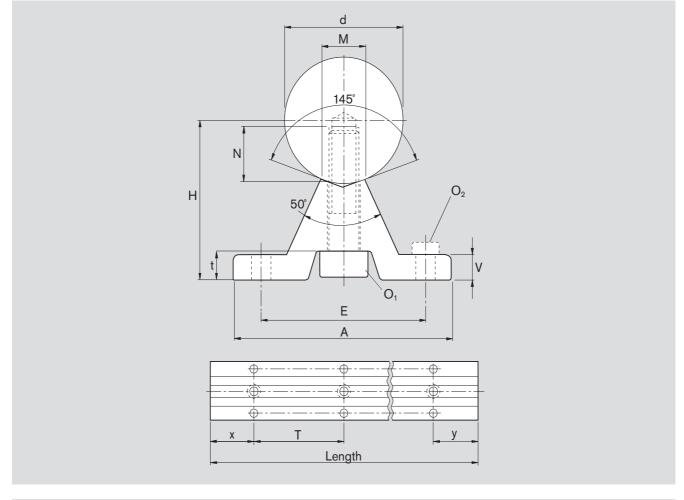
----30 = shaft of corrosion-resistant steel, h6

60 = hard chromium plating out of heat-treatable steel, h6


61 = hard chromium plating out of heat-treatable steel, h7

R1039 Support rails with drilled holes

Shaft Ø d	Mass with shaft E	Part numbers	Mass	Length
[mm]	[mm]		[kg/m]	[mm]
				-0.5 -1.5
25	40	R1039 825 00	1.6	2880
30	45	R1039 930 00	2.0	2880
30	50	R1039 830 00	2.0	2880


R1039 Support rails without drilled holes

Shaft Ø d	Part numbers	Mass	Length
[mm]		[kg/m]	[mm] -0.5 -1.5
25	R1039 525 00	1.6	3000
30	R1039 530 00	2.0	3000

¹⁾ Ordering example:

For a shaft support rail with a shaft of heat-treatable steel, 25 mm diameter, 900 mm length, tolerance quality h7: R1025 025 01 / 900 mm.

					Dimensions [mm]					
Ød	H ¹⁾	А	V	М	0 ₁	Ν	Е	t	O ₂	Т
	±0,1				DIN6912-8.8	Mass	with shaft		DIN6912-8.8	
25	36	57	6	10.8	M8x30	15	40	7	M6	180
30	42	69	7	11	M10x35	17	45	7.5	M8	180
30	42	69	7	11	M10x35	17	50	7.5	M8	180

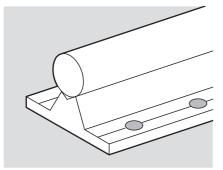
¹⁾ Measured with gauging shaft of nominal diameter d and length approx. 50 mm. Lengths up to 3000 mm with a parallelism of 0.1 mm on request.

For profiled systems, see the catalog "Aluminum Structural Framing".

Shaft support rails with ready-mounted steel shafts for open standard and super Linear Bushings

Flanged, low profile version

R1014 Steel shaft ready-mounted with shaft supports


Material

• Shaft support: Aluminum

Structural Design

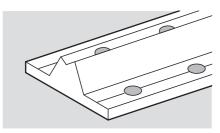
- Low overall height Used in conjunction with Linear sets, these shaft support rails make it possible to build linear motion guideways with an extremely low overall height.
- High rigidity

The shaft bearing surface of the support rail is matched to the diameter of the mating-size shaft to ensure that the shaft bearing pressure acts at the optimum angle; together with the sturdy mounting screws, this guarantees high rigidity.

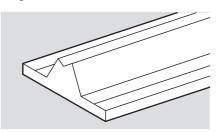
Shaft	Part nu	Mass	
Ød	Drilling hole distance T ₁	Drilling hole distance T ₂	
[mm]			[kg/m]
12	R1014 012	R1014 512	1.75
16	R1014 012	R1014 516	2.65
20	R1014 020	R1014 520	3.95
25	R1014 025	R1014 525	5.6
30	R1014 030	R1014 530	7.9
40	R1014 040	R1014 540	12.8
50	R1014 050	R1014 550	19.4
60	R1014 060	_	27.3
80	R1014 080	_	47.3
		Τ	·

00 = shaft out of heat-treatable steel, h6

- 01 = shaft out of heat-treatable steel, h7


- 30 = shaft out of corrosion-resistant steel, h6

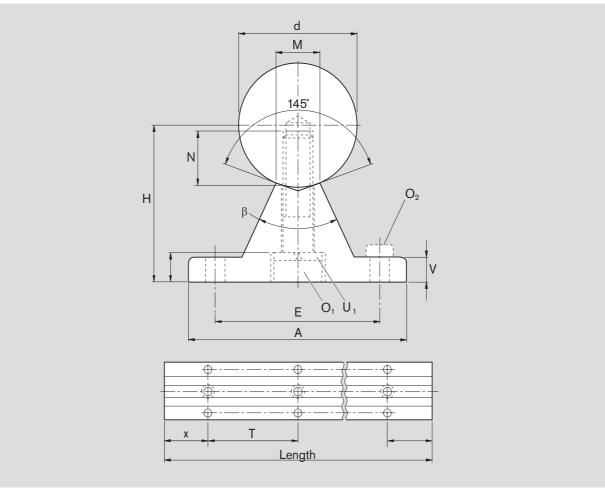
-31 = shaft out of corrosion-resistant steel, h7


- 60 = Shafts out of hard-chromium plating out of corrosionresistant steel, h6

 61 = Shafts out of hard-chromium plating out of corrosionresistant steel, h7

R1050 Support Rail with drilled holes, length [mm] 600^{-0.5}_{-1.5}

R1050 Support Rail without drilled holes, length, [mm] $600^{-0.5}_{-1.5}$



ling hole distance T ₁	Drilling hole distance T ₂	not drilled	
		not united	
			[kg]
R1050 612 00	R1050 712 00	R1050 512 00	0.52
R1050 616 00	R1050 716 00	R1050 516 00	0.64
R1050 620 00	R1050 720 00	R1050 520 00	0.90
R1050 625 00	R1050 725 00	R1050 525 00	1.08
R1050 630 00	R1050 730 00	R1050 530 00	1.43
R1050 640 00	R1050 740 00	R1050 540 00	1.81
R1050 650 00	R1050 750 00	R1050 550 00	2.45
R1050 660 00	-	R1050 560 00	3.16
R1050 680 00	-	R1050 580 00	4.86
	R1050 616 00 R1050 620 00 R1050 625 00 R1050 630 00 R1050 640 00 R1050 650 00 R1050 660 00	R1050 616 00 R1050 716 00 R1050 620 00 R1050 720 00 R1050 625 00 R1050 725 00 R1050 630 00 R1050 730 00 R1050 640 00 R1050 740 00 R1050 650 00 R1050 750 00 R1050 660 00 -	R1050 616 00 R1050 716 00 R1050 516 00 R1050 620 00 R1050 720 00 R1050 520 00 R1050 625 00 R1050 725 00 R1050 525 00 R1050 630 00 R1050 730 00 R1050 530 00 R1050 640 00 R1050 740 00 R1050 540 00 R1050 650 00 R1050 750 00 R1050 550 00 R1050 660 00 - R1050 560 00

Ordering example

For a shaft support rail with a shaft of heat-treatable steel , 30 mm diameter, 1200 mm length, tolerance quality h6, mounted with shaft support R1050 030 60:

R1014 030 00 / 1200 mm.

						Dimensio	ons (mn	n]					Angle
Ød	H ¹⁾	А	V	Μ	0 ₁	U ₁	Ν	Е	t	O ₂ ³⁾	Drill hole	distances ⁴⁾	β
	±0.01				DIN6912-8.8	DIN7980 ²⁾				DIN6912-8.8	T ₁	T ₂	[°]
12	22	40	5	5.8	M4x20	4	8	29	4.5	M4x12	75	120	50
16	26	45	5	7	M5x20	5	9	33	7.6	M5x16	100	150	50
20	32	52	6	8.3	M6x25	6	11	37	8.6	M6x16	100	150	50
25	36	57	6	10.8	M8x30	8	15	42	9	M6x16	120	200	50
30	42	69	7	11	M10x35	10	17	51	10	M8x25	150	200	50
40	50	73	8	15	M10x40	10	19	55	9.5	M8x25	200	300	50
50	60	84	9	19	M12x45	12	21	63	11.5	M10x30	200	300	46
60	68	94	10	25	M14x50	14	25	72	13	M10x30	300	_	46
80	86	116	12	34	M16x60	16	28	92	15	M12x35	300	_	46

Applications that require very high stiffness and dimensional precision, the drill hole distances for the middle holes (shaft mounting) 0.5 T₁ should be implemented.

¹⁾ Measured with gauging shaft of nominal diameter d and length approx. 50 mm.

 $^{\scriptscriptstyle 2)}\,\text{DIN}$ 7980 withdrawn. The washer, however, is still available.

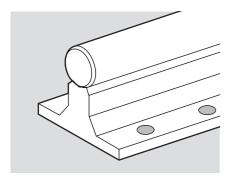
³⁾ Applies only to fixing in tapped holes in steel or cast iron.

⁴⁾ T₁: Traverse load of the Linear Bushing opening and approximate utilization of the load capacities.

T₂: For general requirements

Shaft support rails with ready-mounted steel shafts for open standard and super Linear Bushings

Flanged, high profile version


R1011 Steel shaft ready-mounted with shaft supports

Material

• Shaft support: Aluminum

Structural Design

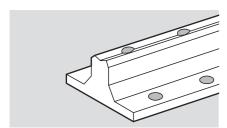
 the overall shaft height combined with linear sets allows a large fitting space for drive, control and measuring components

Shaft	Part nu	Part numbers						
Ød	Drilling hole distance T ₁	Drilling hole distance T ₂						
[mm]			[kg/m]					
12	R1011 012	R1011 512	1.95					
16	R1011 012	R1011 516	2.8					
20	R1011 020	R1011 520	4.1					
25	R1011 025	R1011 525	5.9					
30	R1011 030	R1011 530	8.5					
40	R1011 040	R1011 540	13.3					
50	R1011 050	R1011 550	20.3					
60	R1011 060	_	28.7					
80	R1011 080	_	49.7					
	+	· · · · · · · · · · · · · · · · · · ·						

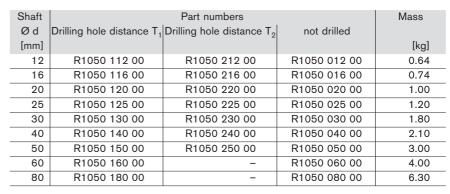
Shafts:	

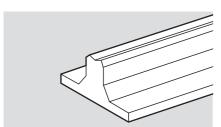
- 00 = shaft out of heat-treatable steel, h6

— 01 = shaft out of heat-treatable steel, h7


-30 = shaft out of corrosion-resistant steel, h6

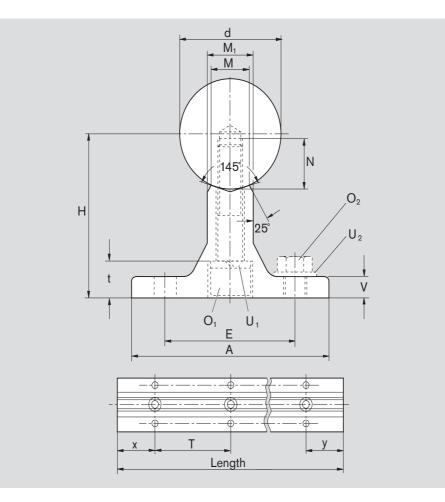
- 31 = shaft out of corrosion-resistant steel, h7


60 = Shafts out of hard-chromium plating out of


- corrosion-resistant steel, h6
- 61 = Shafts out of hard-chromium plating out of corrosion-resistant steel, h7

R1050 Support Rail with drilled holes, length [mm] 600^{-0.5}₋₁₅

R1050 Support Rail without drilled holes, length, $[mm] 600^{-0.5}_{-1.5}$



Ordering example

For a shaft support rail with a shaft of non-corrosion steel, 40 mm diameter, 1100 mm length, tolerance quality h7, mounted with shaft support R1050 240 00:

R1014 030 00 / 1100 mm.

							[Dimen	sions	[mm]				
Ød	H ¹⁾	Α	V	М	M_1	O ₁	U ₁	Ν	Е	t	O ₂ ³⁾	U ₂	Drill hole	e distances ⁴⁾
	±0.01					ISO 4762-8.8	DIN7980 ²⁾				ISO 4762-8.8	DIN125	T ₁	T ₂
											or			
											ISO 4017-8.8			
12	28	43	5	5.8	9	M4x25	4	8	29	5.5	M4x12	4	75	120
16	30	48	5	7	10	M5x25	5	9	33	7	M5x16	5	100	150
20	38	56	6	8.3	11	M6x30	6	11	37	9.6	M6x16	6	100	150
25	42	60	6	10.8	14	M8x35	8	15	42	11	M6x16	6	120	200
30	53	74	8	11	14	M10x40	10	17	51	14	M8x25	8	150	200
40	60	78	8	15	18	M10x45	10	19	55	13.5	M8x25	8	200	300
50	75	90	10	19	22	M12x55	12	21	63	16	M10x30	10	200	300
60	80	100	12	25	30	M14x55	14	25	72	19	M10x30	10	300	-
80	100	125	14	34	42	M16x65	16	28	92	21.5	M12x35	12	300	-

Applications that require very high stiffness and dimensional precision, the drill hole distances for the middle holes (shaft mounting) 0.5 T₁ should be implemented.

¹⁾ Measured with gauging shaft of nominal diameter d and length approx. 50 mm.

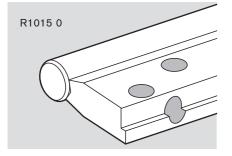
 $^{\rm 2)}\,{\rm DIN}$ 7980 withdrawn. The washer, however, is still available.

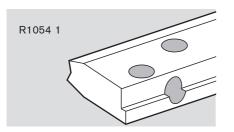
³⁾ Applies only to fixing in tapped holes in steel or cast iron.

⁴⁾ T₁: Traverse load of the Linear Bushing opening and approximate utilization of the load capacities.

T₂: For general requirements

Shaft support rails with ready-mounted steel shafts for open standard and super Linear Bushings


Side fitting


R1015 Steel shaft ready-mounted with shaft supports

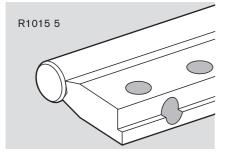
- Material

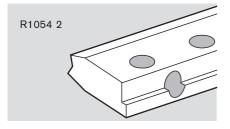
R1054 Shaft supports

- Shaft support: Aluminum
- Structural Design
- · The overall shaft height combined with linear sets allows a large fitting space for drive, control and measuring components
- · Fitting edge eases the assembly

Shaft	Part numbers	Mass	Part numbers	Mass
Ød				
[mm]		[kg/m]		[kg]
20	R1015 020	4.1	R1054 120 00	1.0
25	R1015 025	6.0	R1054 125 00	1.3
30	R1015 030	8.7	R1054 130 00	1.9
40	R1015 040	14.3	R1054 140 00	2.7
50	R1015 050	21.5	R1054 150 00	3.7

Shafts:


00 = shaft out of heat-treatable steel, h6


- 01 = shaft out of heat-treatable steel, h7

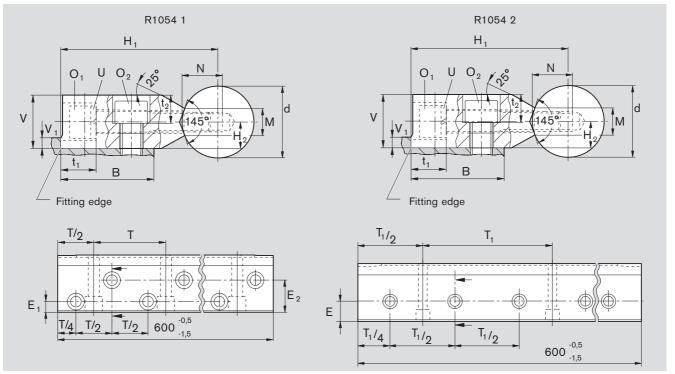
30 = shaft out of corrosion-resistant steel, h6

31 = shaft out of corrosion-resistant steel, h7

- 60 = Shafts out of hard-chromium plating out of corrosion-resistant steel, h6
- 61 = Shafts out of hard-chromium plating out of corrosion-resistant steel, h7

Shaft Ø d	Part numbers	Mass	Part numbers	Mass
[mm]		[kg/m]		[kg]
20	R1015 520	4.3	R1054 220 00	1.1
25	R1015 525	6.3	R1054 225 00	1.5
30	R1015 530	9.0	R1054 230 00	2.1
40	R1015 540	14.8	R1054 240 00	3.0
50	R1015 550	22.3	R1054 250 00	4.2
	Т			

Shafts aus:


00 = shaft out of heat-treatable steel, h6

- 01 = shaft out of heat-treatable steel, h7

- 30 = shaft out of corrosion-resistant steel, h6
- 31 = shaft out of corrosion-resistant steel, h7
- 60 = Shafts out of hard-chromium plating out of
 - corrosion-resistant steel, h6
- 61 = Shafts out of hard-chromium plating out of corrosion-resistant steel, h7

Ordering example

For a shaft support rail with an h6 shaft of heat-treatable steel, 30 mm diameter, 1200 mm length mounted with shaft support R1054 130 00: R1015 030 00 / 1200 mm.

Shaft support R1054 1

								Dime	nsions	[mm]					
Ød	$H_{1}^{(1)}$	$H_{2}^{(1)}$	V	Μ	E1	E_2	Т	t ₁	t ₂	V1 ²⁾	B ²⁾	Ν	O ₁	O ₂ ³⁾	U
	js6	±0.012			±0.15	±0.15				max.			ISO 4762-8.8	ISO 4762-8.8	DIN7980 ⁴⁾
20	52	7.5	15	8.3	8	22	75	8.5	8.5	4	30	11	M6x45	M6x16	6
25	62	10	20	10.8	10	26	75	15	11	5.5	36	15	M8x50	M8x20	8
30	72	12.5	25	11	12	30	100	15.3	13.5	7	42	17	M10x60	M10x25	10
40	88	15	30	15	12	38	100	19	16	8.5	50	21	M12x70	M12x30	12
50	105	17.5	35	19	15	45	100	24	18.5	9	60	25	M14x80	M14x35	14

Shaft support R1054 2

							C	Dimensio	ns [mm]					
Ød	$H_{1}^{(1)}$	H ₂ ¹⁾	V	Μ	Е	T ₁	t ₁	t ₂	V ₁ ²⁾	B ²⁾	Ν	0 ₁	O ₂ ³⁾	U
	js6	±0,012			±0.15				max.			ISO 4762-8.8	ISO 4762-8.8	DIN7980 ⁴⁾
20	52	7.5	15	8.3	15	100	8.5	8.5	4	30	11	M6x45	M6x16	6
25	62	10	20	10.8	18	120	15	11	5.5	36	15	M8x50	M8x20	8
30	72	12.5	25	11	21	150	15.3	13.5	7	42	17	M10x60	M10x25	10
40	88	15	30	15	25	200	17.5	16	8.5	50	19	M10x70	M12x30	10
50	105	17.5	35	19	30	200	21.5	18.5	9	60	21	M12x80	M14x35	12

¹⁾ Measured with gauging shaft of nominal diameter d and length approx. 50 mm.

 $^{2)}$ Recommended design: make mating surface without fitting edge (V $_{1})$ and line up parallel via the shafts

³⁾ Applies only to fixing in tapped holes in steel or cast iron.

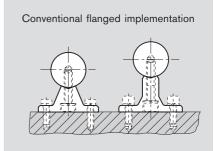
⁴⁾ DIN 7980 withdrawn. The washer, however, is still available.

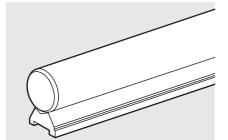
Shaft support rails with ready-mounted steel shafts for open standard and super Linear Bushings

Without Flange

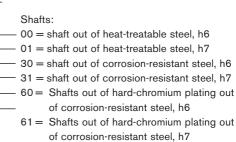
R1013 Steel shaft ready-mounted with shaft supports

Material

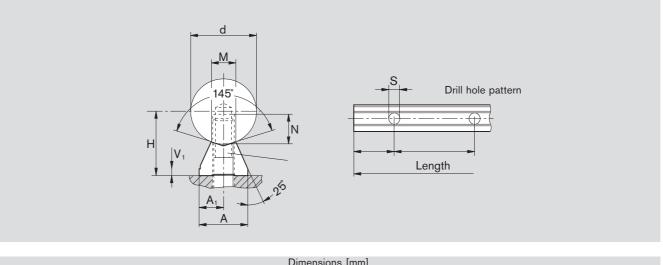

• Shaft support: Aluminum


Structural design

- This shaft support allows a very compact drive and is especially suitable for designs that can attach the steel shaft from below. The comparison to a conventional flange shows the particularly small overall height of this element.
- Cost effective due to restricted height tolerance.



R1013


Shaft Ø d	Part numbers	Mass
[mm]		[kg/m]
12	R1013 012	1.1
16	R1013 016	1.9
20	R1013 020	3.0
25	R1013 025	4.5
30	R1013 030	6.3

Ordering example

For a shaft support rail with an h7 shaft of heat-treatable steel, 25 mm diameter, 2500 mm length:

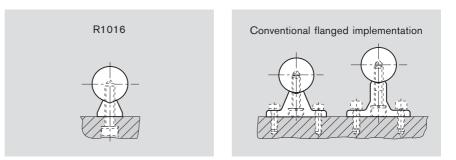
R1013 025 01 / 2500 mm.

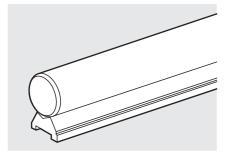
				Dimen					
Ød	H ¹⁾	А	A ₁	V ₁	Т	S	Ν	Μ	0
	±0.05								ISO 4762-8.8
12	14.5	11	5.5	3	75	4.5	8	5.8	M4
16	18	14	7.0	3	75	5.5	9	7.0	M5
20	22	17	8.5	3	75	6.6	11	8.3	M6
25	26	21	10.5	3	75	9.0	15	10.8	M8
30	30	23	11.5	3	100	11	17	11	M10

¹⁾ Measured with gauging shaft of nominal diameter d and length approx. 50 mm. Lengths up to 3000 mm with a parallelism of 10 µm upon request.

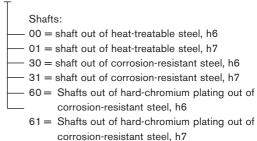
Shaft support rails with ready-mounted steel shafts for open standard and super Linear Bushings

Without Flange, with Fitting Edge

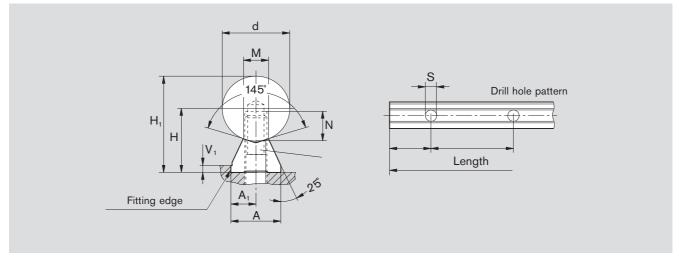

R1016 Steel shaft ready-mounted with shaft supports


Material

Shaft support: Steel


Structural Design

- This shaft support allows a very compact drive and is especially suitable for designs that can attach the steel shaft from below. The comparison to a conventional flange shows the particularly small overall height of this element.
- Fitting edge eases assembly.


Shaft	Part numbers	Mass
Ød		
[mm]		[kg/m]
16	R1016 016	2.5
20	R1016 020	3.8
25	R1016 025	5.6
30	R1016 030	7.6
40	R1016 040	13.4
50	R1016 050	20.2
-		

Ordering example

For a shaft support rail with an h7 shaft of heat-treatable steel, 30 mm diameter, 900 mm length:

R1016 030 01 / 900 mm.

				Dim	ensions	[mm]					Tolerances	within one g	grade [µm]
												Shaft h6	Shaft h7
Ød	H ¹⁾	H ₁	А	A ₁	V ₁	Т	S	Ν	Μ	0	H ²⁾	H ₁ ³⁾	H ₁ ³⁾
			±0.02	±0.02						DIN4762-8.8			
16	18	26	14	7	3	75	5.5	9	7	M5	20	32	36
20	22	32	17	8.5	3	75	6.6	11	8.3	M6	20	33	38
25	26	38.5	21	10.5	3	75	9	15	10.8	M8	20	33	38
30	30	45	23	11.5	3	100	11	17	11	M10	20	33	38
40	39	59	30	15	4	100	13.5	21	15	M12	20	35	41
50	46	71	35	17.5	5	100	15.5	25	19	M14	20	35	41

 $^{1)}\mbox{Tolerance: }\pm 0.02$ mm; sorted by height - delivered to 20 $\mu m.$

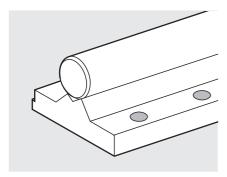
²⁾ Measured with gauging shaft of nominal diameter d and length approx. 50 mm. Lengths up to 3000 mm with a parallelism of 10 µm upon request.

³⁾ Inclusive shaft tolerance (statistically determined).

V 00

Shaft support rails with ready-mounted steel shafts für Radial Linear Bushings

Flanged


R1018 Steel shaft ready-mounted with shaft supports

Material

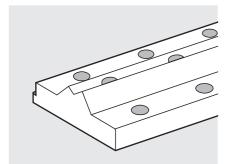
• Shaft support: Steel

Structural Design

- Large design offers very high stiffness
- · Fitting edge eases assembly
- For guides with Radial Linear Bushings and Linear sets with Radial Linear Bushings

Shaft	Part numbers	Mass
Ød		
[mm]		[kg/m]
30	R1018 030	20.5
40	R1018 040	31
50	R1018 050	50
60	R1018 060	70
80	R1018 080	121
	Т	

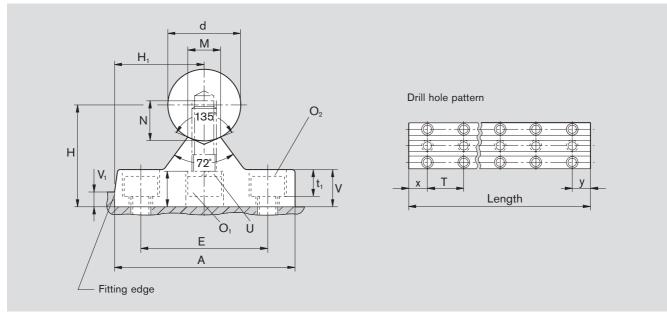
Shafts:


-- 00 = shaft out of heat-treatable steel, h6

----- 30 = shaft out of corrosion-resistant steel, h6

- 60 = Shafts out of hard-chromium plating out

of corrosion-resistant steel, h6


R1052 Shaft support Length [mm] 600^{-0.5}_{-1.5}

Shaft	Part numbers	Mass
Ød		
[mm]		[kg]
30	R1052 130 00	9.0
40	R1052 140 00	12.7
50	R1052 150 00	20.7
60	R1052 160 00	29.0
80	R1052 180 00	48.9

Ordering example

For a shaft support rail with an h7 shaft of heat-treatable steel, 30 mm diameter, 1200 mm length mounted with shaft support R1052 130 00: R1018 030 00 / 1200 mm.

								Dimensi	ions [mn	ן 1				
Ød	А	H ¹⁾	H ₁	V	V ₁ ²⁾	М	E	Т	t ₁	t ₂	Ν	0 ₁	O ₂	U
		js7	js7			-0.5						ISO 4762-8.8	ISO 4762-8.8	DIN7980 ³⁾
30	80	50	40	19	7	13	55	60	22	13,5	17	M10x30	M10	10
40	100	60	50	22	8.5	18	70	75	22	16	21	M12x40	M12	12
50	125	75	62.5	30	9	23	90	100	28	21	28	M16x50	M16	16
60	150	90	75	34	13	27	110	120	34	25.5	32	M20x60	M20	20
80	200	115	100	42	18	37	140	150	38.5	30.5	40	M24x80	M24	24

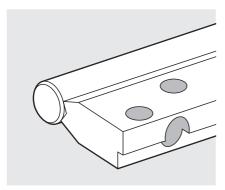
¹⁾ Measured with gauging shaft of nominal diameter d and length approx. 50 mm.

 $^{2)}$ Recommended design: make mating surface without fitting edge (V1) and line up parallel via the shafts

³⁾ DIN 7980 withdrawn. The washer, however, is still available.

Shaft support rails with ready-mounted steel shafts für Radial Linear Bushings

Side Fitting


R1020 Steel shaft ready-mounted with shaft supports

Material

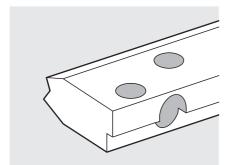
• Shaft support: Steel

Structural Design

- Large design offers very high stiffness
- · Fitting edge eases assembly
- For guides with Radial Linear Bushings and Linear sets with Radial Linear Bushings side opening

Shaft	Part numbers	Mass
Ød		
[mm]		[kg/m]
30	R1020 030	20
40	R1020 040	36
50	R1020 050	54
60	R1020 060	82
80	R1020 080	136
	Т	

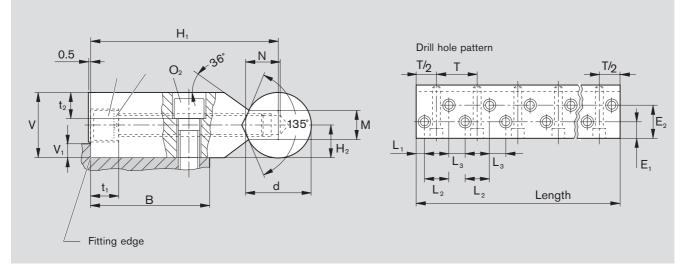
Shafts:


-- 00 = shaft out of heat-treatable steel, h6

----- 30 = shaft out of corrosion-resistant steel, h6

- 60 = Shafts out of hard-chromium plating out

of corrosion-resistant steel, h6


R1053 Shaft support Length [mm] $600^{-0.5}_{-1.5}$

Shaft	Part numbers	Mass
Ød		
[mm]		[kg]
30	R1053 130 00	8.7
40	R1053 140 00	15.5
50	R1053 150 00	23.0
60	R1053 160 00	36.0
80	R1053 180 00	58.0

Ordering example

For a shaft support rail with an h7 shaft of heat-treatable steel, 30 mm diameter, 1200 mm length mounted with shaft support R1053 130 00: R1020 030 00 / 1200 mm.

									Dii	mensi	ons [I	mm]						
Ød	H ₁	H ₂ ¹⁾	V	V ₁ ²⁾	Μ	E ₁	E_2	Т	L ₁	L_2	L3	t ₁	t ₂	B ³⁾	Ν	0 ₁	O2 ⁴⁾	U
	±0,015	±0,013		max.	-0.5	±0.2	±0.2									ISO 4762-8.8	ISO 4762-8.8 DII	N7980 ⁵⁾
30	90	15	30	7	13	23	46	60	12	36	24	13.5	13.5	57	17	M10x80	M10x30	10
40	115	20	40	8.5	18	30	60	75	15	45	30	16	16	73	21	M12x100	M12x40	12
50	140	25	50	9	23	38	76	100	20	60	40	23	21	92	28	M16x120	M16x50	16
60	180	30	60	13	27	50	100	120	24	72	48	25.5	25.5	120	32	M20x160	M20x60	20
80	220	40	80	18	37	60	120	150	30	90	60	44	30.5	145	40	M24x180	M24x80	24

 $^{\mbox{\tiny 1)}}$ Measured with gauging shaft of nominal diameter d and length approx. 50 mm.

 $^{2)}$ Recommended design: make mating surface without fitting edge (V1) and line up parallel via the shafts

³⁾ Recommended design for connecting parts.

⁴⁾ Applies only to fixing in tapped holes in steel or cast iron.

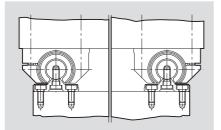
 $^{\rm 5)}\,{\rm DIN}\,$ 7980 withdrawn. The washer, however, is still available.

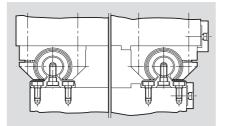
V 000

Shaft support rails with ready-mounted steel shafts for Radial Compact Sets

Flanged, with Fitting Edge

R1012 Steel shaft ready-mounted with shaft supports

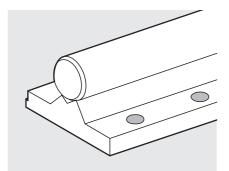

Material


· Shaft support: Steel

Structural design

- Together with Radial Compact sets you can achieve guidance with very low profile
- Fitting edge eases assembly

Assembly


Without fitting edge

- Align first shaft with the support rail (ready-mounted unit), using a straightedge, and screw into place.
- Align second shaft in parallel, preferably using a straightedge (see "Parallelism", General Technical Data and Mounting Instructions) and screw shaft support rail in place.
- Push Radial Compact Sets onto the shafts and screw into place on the machine table.

With fitting edge

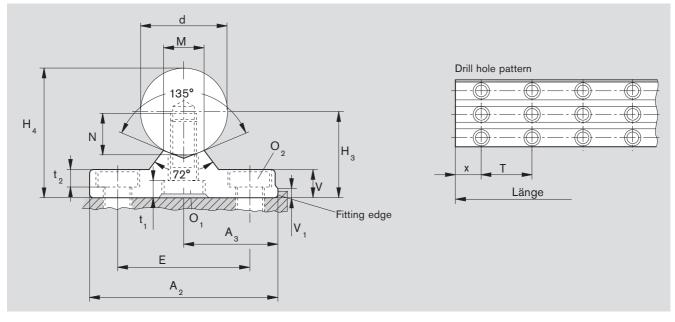
- a) One fitting edge on the machine base and one on the machine table, or
- b) only one fitting edge on the machine base.
- Press first shaft with support rail against fitting edge and screw into place.
- Align second shaft in parallel, preferably using a straightedge (see "Parallelism", General Technical Data and Mounting Instructions) and screw shaft support rail into place.
- Push Radial Compact Sets onto the shafts and in case of a) Press Radial Compact Sets of the first shaft against fitting edge of the machine table and screw into place; then screw Radial Compact Sets of the second shaft into place on machine table, or

in case of b) Screw Radial Compact Sets into place on machine table.

Part numbers	Mass
	[kg/m]
R1012 030	12,3
R1012 040	19,6
R1012 050	31,0
R1012 060	45,6
R1012 080	79,2
	R1012 030 R1012 040 R1012 050 R1012 060

Shafts:

-00 = shaft out of heat-treatable steel, h6


- 60 = Shafts out of hard-chromium plating out

of corrosion-resistant steel, h6

Ordering example

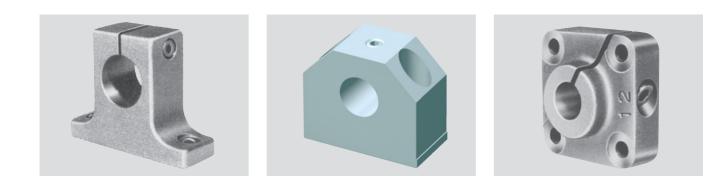
For a shaft support rail with an h6 shaft of heat-treatable steel, 40 mm diameter, 2400 mm length:

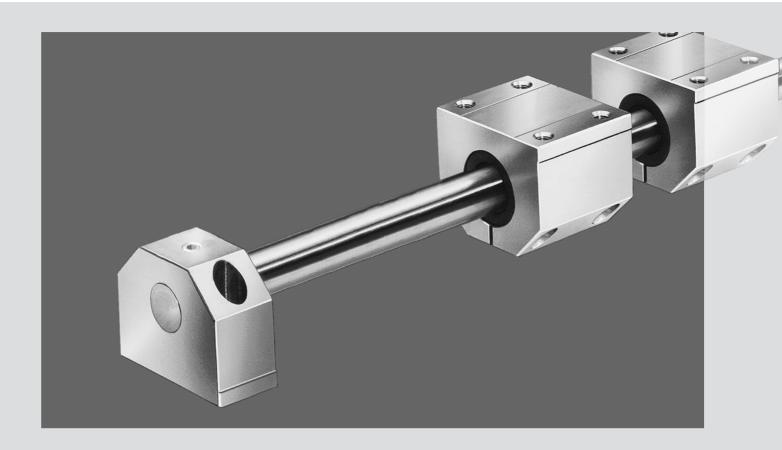
R1012 040 00 / 900 mm.

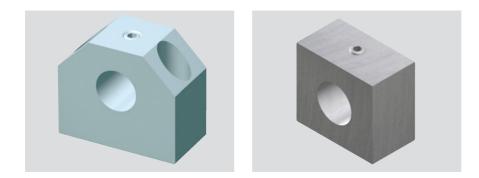
	Dimensions [mm]													within one [µm] Shaft h6		
Ød	A ₂	A ₃	H ₃ ¹⁾	H₄	V	V ₁	М	Е	0 ₁	t,	N	0 ₂	t ₂	т	H ₃ ²⁾	$H_4^{3)}$
	-	±0.02	0				-0.5		DIN6912-8.8			DIN7984-8.8	-		5	
30	68	34	33	48	11	6	13	46	M10x25	9	17	M10	6.8	60	204)	29
40	85	42.5	40	60	13	6	18	58	M12x30	10	21	M12	8.4	75	20 ⁴⁾	31
50	105	52.5	50	75	17	8	23	74	M16x40	10.8	28	M16	10.5	100	204)	31
60	130	65	60	90	20	8	27	90	M20x40	16	32	M20	12.5	120	20	33
80	170	85	80	120	26	10	37	120	M24x60	16	40	M24	16	150	20	33

 $^{1)}$ Tolerance: ±0.02 mm; sorted by height - deliverd to 20 $\mu m.$

²⁾ Measured with gauging shaft of nominal diameter d and length approx. 50 mm.


³⁾ Inclusive shaft tolerance (statistically determined).


 $^{\scriptscriptstyle 4)}$ Lengths up to 3000 mm with a parallelism of 10 μm upon request.


Shaft Support Blocks

The Advantages

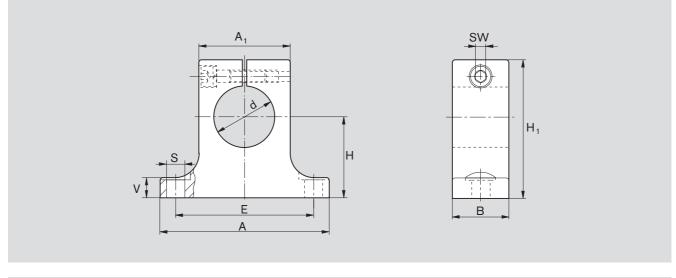
- For easy assembly and fast alignment
- Precise execution with fitting edge
- More cost-effective than customer-built designs

Jo

Shaft support blocks

Shaft support blocks, R1055

Material


Spheroidal graphite cast iron

Structural design

- Slim design
- Side clamping

Shaft	Part numbers	Mass
Ød		
[mm]		[kg]
8	R1055 008 00	0.03
12	R1055 012 00	0.06
16	R1055 016 00	0.12
20	R1055 020 00	0.22
25	R1055 025 00	0.37
30	R1055 030 00	0.55
40	R1055 040 00	0.97
50	R1055 050 00	1.90
60	R1055 060 00	3.60
80	R1055 080 00	7.30

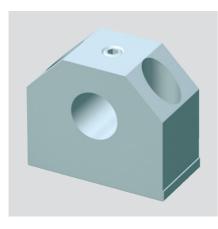
Ø d d H ¹) H ₁ ²) A ²) A ₁ ²) B ²) E S ³) V ²) H8	SW
	300
8 8 15±0.010 27 32 16 10 25±0.15 4.5 5	2.5
12 12 20±0.010 35 42 20 12 32±0.15 5.5 5.5	3
16 16 25±0.010 42 50 26 16 40±0.15 5.5 6.5	3
20 20 30±0.010 50 60 32 20 45±0.15 5.5 8	3
25 25 35±0.010 58 74 38 25 60±0.15 6.6 9	4
30 30 40±0.010 68 84 45 28 68±0.20 9.0 10	5
40 40 50±0.010 86 108 56 32 86±0.20 11.0 12	6
50 50 60±0.015 100 130 80 40 108±0.20 11.0 14	6
60 60 75±0.015 124 160 100 48 132±0.25 13.5 15	8
80 80 100±0.015 160 200 130 60 170±0.50 17.5 22	10

¹⁾ Relative to shaft nominal dimension d.

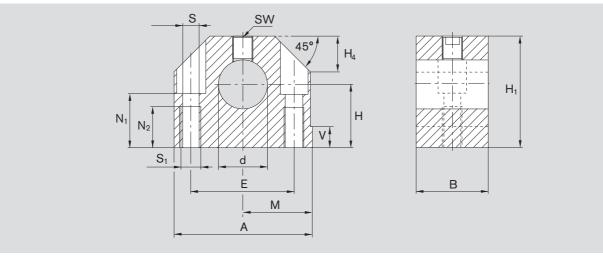
²⁾ Tolerance to DIN 1685 – GTB 15.

 $^{\scriptscriptstyle 3)}$ Mounting screws to ISO 4762-8.8.

Shaft support blocks


Shaft support blocks, R1057

Material


Aluminum

Structural design

- Rigid mounting of shaft due to extrawide construction
- Clamping from above for better accesibility
- Higher security by clamping screw with larger thread diameter
- Thread for attachment from below
- Drill holes for attachment from above
- With fitting edge for easy alignment

Shaft Ø d	Part numbers	Mass
[mm]		[kg]
10	R1057 010 00	0.05
12	R1057 012 00	0.06
16	R1057 016 00	0.11
20	R1057 020 00	0.18
25	R1057 025 00	0.35
30	R1057 030 00	0.48
40	R1057 040 00	0.90
50	R1057 050 00	1.50
60	R1057 060 00	3.00

	Dimensions [mm]													Tightening	
Ød	d	$H^{1)}$	H ₁	M ¹⁾	А	В	E	S ²⁾	S ₁	N ₁	N_2	V	H_4	SW	torque
	H8	±0.01		±0.01											[Nm]
10	10	18	31	20	40	20	27±0.15	5.3	M6	14	13	5	10	2.5	3.8
12	12	20	35	21.5	43	20	30±0.15	5.3	M6	16.5	13	5	10	2.5	3.8
16	16	25	42	26.5	53	24	38±0.15	6.6	M8	21	18	5	13	3	6.6
20	20	30	51	30	60	30	42±0.15	8.4	M10	25	22	5	16	4	16
25	25	35	61	39	78	38	56±0.15	10.5	M12	30	26	6.5	20	5	30
30	30	40	70	43.5	87	40	64±0.15	10.5	M12	34	26	8	22	5	30
40	40	50	88	54	108	48	82±0.15	13.5	M16	44	34	10	28	6	52
50	50	60	105	66	132	58	100±0.20	17.5	M20	49	42	12	37	8	120
60	60	75	130	82	164	74	124±0.20	22	M27	59	42	13	42	10	220

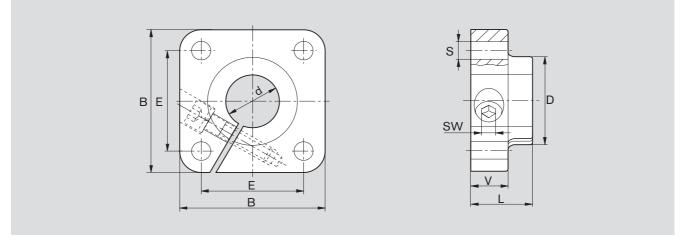
 $^{\scriptscriptstyle 1)}$ Relative to shaft nominal dimension d.

²⁾ Mounting screws to ISO 4762-8.8.

Shaft support blocks

Shaft support blocks, R1056 with flange

Material


Lamellar graphite cast iron

Structural design

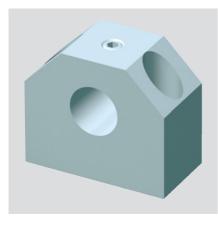
- The assembly of the shafts in customer bore holes makes it possible for the flanged shaft blocks to align the shaft and prevent an overloading of the Linear Bushings by unparalleled shafts
- Side clamping screw

Shaft	Part numbers	Mass
Ød		
[mm]		[kg]
12	R1056 012 00	0.15
16	R1056 016 00	0.21
20	R1056 020 00	0.28
25	R1056 025 00	0.41
30	R1056 030 00	0.75
40	R1056 040 00	1.65
50	R1056 050 00	2.60

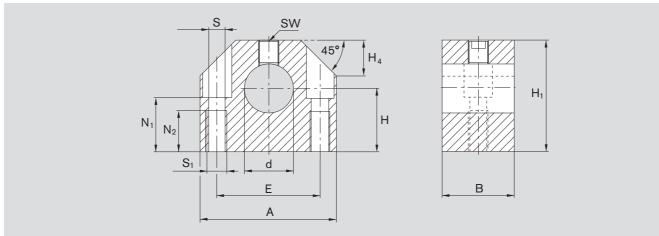
			I	Dimensions [mm	1]			
Ød	d	B ¹⁾	L ¹⁾	D ¹⁾	E	S	V ¹⁾	SW
	H7					H13		
12	12	42	20	23.5	30±0.12	5.5	12	3
16	16	50	20	27.5	35±0.12	5.5	12	3
20	20	54	23	33.5	38±0.15	6.6	14	4
25	25	60	25	42.0	42±0.15	6.6	16	5
30	30	76	30	49.5	54±0.25	9.0	19	6
40	40	96	40	65.0	68±0.25	11.0	26	8
50	50	106	50	75.0	75±0.25	11.0	36	8

¹⁾ Tolerance to DIN 1686 - GTB 15.

Shaft support blocks


Compact-Shaft support blocks, R1058

Material


• Aluminium

Structural design

- Especially low profile fitting for Linear sets with compact Linear Bushings
- Clamping from above for better access
- Higher security by clamping screw with larger thread diameter
- Thread for attachment from below
- Drill holes for attachment from above

Shaft	Part numbers	Mass
Ød		
[mm]		[kg]
12	R1058 012 00	0.045
16	R1058 016 00	0.065
20	R1058 020 00	0.110
25	R1058 025 00	0.170
30	R1058 030 00	0.220
40	R1058 040 00	0.470
50	R1058 050 00	0.820

Dimensions [mm]										Tightening			
Ød	d	H ¹⁾	H ₁	А	В	E	S ²⁾	S ₁	N ₁	N_2	H_4	SW	torque
	H8	±0.01				±0.15							[Nm]
12	12	19	33	40	18	27	5.3	M6	16	13	11	2.5	3.8
16	16	22	38	45	20	32	5.3	M6	18	13	13	2.5	3.8
20	20	25	45	53	24	39	6.6	M8	22	18	15	3.0	6.6
25	25	31	54	62	28	44	8.4	M10	26	22	17	4.0	16
30	30	34	60	67	30	49	8.4	M10	29	22	19	4.0	16
40	40	42	76	87	40	66	10.5	M12	38	26	24	5.0	30
50	50	50	92	103	50	80	13.5	M16	46	34	30	6.0	52

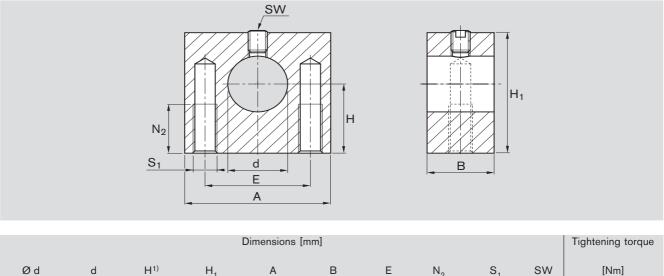
¹⁾ Relative to shaft nominal dimension d.

 $^{\scriptscriptstyle 2)}$ Mounting screws to ISO 4762-8.8.

Shaft support blocks

Compact shaft support blocks, R1059 Corrosion-resistant

Material


• Especially rust and acid resistant chrome nickel steel

Structural design

- Especially low profile fitting for Linear sets with compact Linear Bushings
- Clean design for applications in the Medical, Food, Chemical and Semiconductor industries
- Clamping from above
- Plastic cover for clamping screw (included)
- Higher security by clamping screw with larger thread diameter
- Thread for attachment from below
- The especially deep drill holes can be bored through for attachment from above

Shaft	Part numbers	Mass
Ød		
[mm]		[kg]
12	R1059 012 00	0.16
16	R1059 016 00	0.23
20	R1059 020 00	0.37
25	R1059 025 00	0.59
30	R1059 030 00	0.73
40	R1059 040 00	1.60

θu	u	П. ⁷	- П ₁	A	Б	L .	IN ₂	U ₁	300	LINIII
	H7	±0.01				±0.15				
12	12	19	33	40	18	27	13	M6	3	6.6
16	16	22	38	45	20	32	13	M6	3	6.6
20	20	25	45	53	24	39	18	M8	4	16
25	25	31	54	62	28	44	22	M10	4	16
30	30	34	60	67	30	49	22	M10	4	16
40	40	42	76	87	40	66	26	M12	5	30

¹⁾ Relative to shaft nominal dimension d.

Bosch Rexroth Corporation Linear Motion and Assembly Technologies 14001 South Lakes Drive Charlotte, NC 28273 Telephone (800) 438-5983 Facsimile (704) 583-0523 www.boschrexroth-us.com

Bosch Rexroth Corporation Corporate Headquarters 5150 Prairie Stone Parkway Hoffman Estates, IL 60192-3707 Telephone (847) 645-3600 Facsimile (847) 645-6201

Bosch Rexroth Corporation Industrial Hydraulics 2315 City Line Road Bethlehem, PA 18017-2131 Telephone (610) 694-8300 Facsimile (610) 694-8467

Bosch Rexroth Corporation Electric Drives and Controls 5150 Prairie Stone Parkway Hoffman Estates, IL 60192-3707 Telephone (847) 645-3600 Facsimile (847) 645-6201

Bosch Rexroth Corporation Pneumatics 1953 Mercer Road Lexington, KY 40511-1021 Telephone (859) 254-8031 Facsimile (859) 281-3491

Bosch Rexroth Corporation Mobile Hydraulics 1700 Old Mansfield Road Wooster, OH 44691-0394 Telephone (330) 263-3300 Facsimile (330) 263-3333